已知橢圓C:x2a2+y2b2=1(a>b>0)過點(diǎn)(1,32),且長(zhǎng)軸長(zhǎng)等于4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)F1,F(xiàn)2是橢圓C的兩個(gè)焦點(diǎn),⊙O是以F1,F(xiàn)2為直徑的圓,直線l:y=kx+m與⊙O相切,并與橢圓C交于不同的兩點(diǎn)A,B,若OA?OB=-32,求k的值.
x
2
a
2
y
2
b
2
3
2
OA
OB
3
2
【考點(diǎn)】橢圓的標(biāo)準(zhǔn)方程.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:1054引用:34難度:0.3
相似題
-
1.把橢圓
繞左焦點(diǎn)按順時(shí)針方向旋轉(zhuǎn)90°,則所得橢圓的準(zhǔn)線方程為.x225+y29=1發(fā)布:2024/12/1 8:0:1組卷:28引用:1難度:0.5 -
2.已知橢圓的標(biāo)準(zhǔn)方程為
,則橢圓的焦點(diǎn)坐標(biāo)為( ?。?/h2>x210+y2=1發(fā)布:2024/11/24 8:0:2組卷:1251引用:2難度:0.9 -
3.已知方程
表示曲線C,則下列說法正確的是( ?。?/h2>y24-2a+x2a=1發(fā)布:2024/12/19 18:30:1組卷:229引用:7難度:0.6