如圖①,我們?cè)凇案顸c(diǎn)”直角坐標(biāo)系上可以看到,要求AB或DE的長(zhǎng)度,可以轉(zhuǎn)化為求Rt△ABC或Rt△DEF的斜邊長(zhǎng).
例如:從坐標(biāo)系中發(fā)現(xiàn):D(-7,5),E(4,-3),所以DF=5-(-3)=8,EF=|4-(-7)|=11,所以由勾股定理可得:DE=82+112=185.
(1)在圖①中請(qǐng)用上面的方法求線段AB的長(zhǎng):AB=55;
(2)在圖②中:設(shè) A(x1,y1),B(x2,y2),試用 x1,x2,y1,y2 表示:AC=y1-y2y1-y2,BC=x1-x2x1-x2,AB=(x1-x2)2+(y1-y2)2(x1-x2)2+(y1-y2)2;
(3)試用(2)中得出的結(jié)論解決如下題目:已知:A(2,1),B(4,3);
①直線AB與x軸交于點(diǎn)D,求線段BD的長(zhǎng);
②C為坐標(biāo)軸上的點(diǎn),且使得△ABC是以AB為邊的等腰三角形,求出C點(diǎn)的坐標(biāo).
8
2
+
1
1
2
185
(
x
1
-
x
2
)
2
+
(
y
1
-
y
2
)
2
(
x
1
-
x
2
)
2
+
(
y
1
-
y
2
)
2
【考點(diǎn)】勾股定理;兩點(diǎn)間的距離公式.
【答案】5;y1-y2;x1-x2;
(
x
1
-
x
2
)
2
+
(
y
1
-
y
2
)
2
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/4 8:0:9組卷:63引用:1難度:0.4
相似題
-
1.《時(shí)代數(shù)學(xué)學(xué)習(xí)》雜志2007年3月將改版為《時(shí)代學(xué)習(xí)報(bào)?數(shù)學(xué)周刊》,其徽標(biāo)是我國古代“弦圖”的變形(見示意圖).該圖可由直角三角形ABC繞點(diǎn)O同向連續(xù)旋轉(zhuǎn)三次(每次旋轉(zhuǎn)90°)而得.因此有“數(shù)學(xué)風(fēng)車”的動(dòng)感.假設(shè)中間小正方形的面積為1,整個(gè)徽標(biāo)(含中間小正方形)的面積為92,AD=2,則徽標(biāo)的外圍周長(zhǎng)為
發(fā)布:2025/1/25 8:0:2組卷:229引用:2難度:0.7 -
2.如圖,在Rt△ABC中,∠ACB=90°
(1)已知BC=5,AB=13,求AC;
(2)若斜邊AB上的高為CD,求CD.發(fā)布:2025/1/28 8:0:2組卷:48引用:0難度:0.5 -
3.如圖,AB是圓O的直徑,點(diǎn)C、D為圓O上的點(diǎn),滿足:點(diǎn)C是弧AD的中點(diǎn),AD交OC于點(diǎn)E.已知AD=8,EC=2.
(1)求圓O的半徑;
(2)過點(diǎn)C作AB的平行線交弦AD于點(diǎn)F,求線段EF的長(zhǎng).發(fā)布:2025/1/28 8:0:2組卷:164引用:2難度:0.6