已知雙曲線C:x2a2-y2b2=1(a>0,b>0)的實軸長為2.點(7,-1)是拋物線E:x2=2py的準線與C的一個交點.
(1)求雙曲線C和拋物線E的方程;
(2)過雙曲線C上一點P作拋物線E的切線,切點分別為A,B.求△PAB面積的取值范圍.
C
:
x
2
a
2
-
y
2
b
2
=
1
(
a
>
0
,
b
>
0
)
(
7
,-
1
)
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:325引用:6難度:0.6
相似題
-
1.橢圓
(b>0)與雙曲線x225+y2b2=1有公共的焦點,則b=.x28-y2=1發(fā)布:2024/12/30 13:0:5組卷:180引用:7難度:0.8 -
2.兩千多年前,古希臘大數學家阿波羅尼奧斯發(fā)現(xiàn),用一個不垂直于圓錐的軸的平面截圓錐,其截口曲線是圓錐曲線(如圖).已知圓錐軸截面的頂角為2θ,一個不過圓錐頂點的平面與圓錐的軸的夾角為α.當
時,截口曲線為橢圓;當α=θ時,截口曲線為拋物線;當0<α<θ時,截口曲線為雙曲線.在長方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2,點P在平面ABCD內,下列說法正確的是( ?。?/h2>θ<α<π2發(fā)布:2024/12/11 15:30:1組卷:519引用:3難度:0.3 -
3.已知等軸雙曲線N的頂點分別是橢圓
的左、右焦點F1、F2.C:x26+y22=1
(Ⅰ)求等軸雙曲線N的方程;
(Ⅱ)Q為該雙曲線N上異于頂點的任意一點,直線QF1和QF2與橢圓C的交點分別為E,F(xiàn)和G,H,求|EF|+4|GH|的最小值.發(fā)布:2024/12/29 3:0:1組卷:310引用:3難度:0.6
把好題分享給你的好友吧~~