當(dāng)前位置:
試題詳情
如圖,直角坐標(biāo)系中,圓的方程為x2+y2=1,A(1,0),B(-12,32),C(-12,-32)為圓上三個(gè)定點(diǎn),某同學(xué)從A點(diǎn)開(kāi)始,用擲骰子的方法移動(dòng)棋子.規(guī)定:①每擲一次骰子,把一枚棋子從一個(gè)定點(diǎn)沿圓弧移動(dòng)到相鄰下一個(gè)定點(diǎn);②棋子移動(dòng)的方向由擲骰子決定,若擲出骰子的點(diǎn)數(shù)為偶數(shù),則按圖中箭頭方向移動(dòng);若擲出骰子的點(diǎn)數(shù)為奇數(shù),則按圖中箭頭相反的方向移動(dòng).
設(shè)擲骰子n次時(shí),棋子移動(dòng)到A,B,C處的概率分別為Pn(A),Pn(B),Pn(C).例如:擲骰子一次時(shí),棋子移動(dòng)到A,B,C處的概率分別為P1(A)=0,P1(B)=12,P1(C)=12.
(1)分別擲骰子二次,三次時(shí),求棋子分別移動(dòng)到A,B,C處的概率;
(2)擲骰子n次時(shí),若以x軸非負(fù)半軸為始邊,以射線OA,OB,OC為終邊的角的余弦值記為隨機(jī)變量Xn,求X4的分布列和數(shù)學(xué)期望;
(3)記Pn(A)=an,Pn(B)=bn,Pn(C)=cn,其中an+bn+cn=1.證明:數(shù)列{bn-13}是等比數(shù)列,并求a2000.
1
2
3
2
1
2
3
2
1
2
1
2
1
3
【考點(diǎn)】離散型隨機(jī)變量的均值(數(shù)學(xué)期望).
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:216引用:1難度:0.4
相似題
-
1.某市舉行“中學(xué)生詩(shī)詞大賽”,分初賽和復(fù)賽兩個(gè)階段進(jìn)行,規(guī)定:初賽成績(jī)大于90分的具有復(fù)賽資格,某校有800名學(xué)生參加了初賽,所有學(xué)生的成績(jī)均在區(qū)間(30,150]內(nèi),其頻率分布直方圖如圖.
(Ⅰ)求獲得復(fù)賽資格的人數(shù);
(Ⅱ)從初賽得分在區(qū)間(110,150]的參賽者中,利用分層抽樣的方法隨機(jī)抽取7人參加學(xué)校座談交流,那么從得分在區(qū)間(110,130]與(130,150]各抽取多少人?
(Ⅲ)從(Ⅱ)抽取的7人中,選出3人參加全市座談交流,設(shè)X表示得分在區(qū)間(130,150]中參加全市座談交流的人數(shù),求X的分布列及數(shù)學(xué)期望E(X).發(fā)布:2024/12/29 13:30:1組卷:126引用:7難度:0.5 -
2.設(shè)離散型隨機(jī)變量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 發(fā)布:2024/12/29 13:0:1組卷:181引用:5難度:0.5 -
3.從4名男生和2名女生中任選3人參加演講比賽,用X表示所選3人中女生的人數(shù),則E(X)為( ?。?/h2>
發(fā)布:2024/12/29 13:30:1組卷:129引用:6難度:0.7