給定正整數(shù)k,m,其中2≤m≤k,如果有限數(shù)列{an}同時滿足下列兩個條件,則稱{an}為(k,m)-數(shù)列.記(k,m)-數(shù)列的項(xiàng)數(shù)的最小值為G(k,m).
條件①:{an}的每一項(xiàng)都屬于集合{1,2,3,?,k};
條件②:從集合{1,2,3,?,k}中任取m個不同的數(shù)排成一列,得到的數(shù)列都是{an}的子數(shù)列.
注:從{an}中選取第i1項(xiàng)、第i2項(xiàng)、…、第is項(xiàng)(其中i1<i2<?<is)形成的新數(shù)列ai1,ai2,?,ais稱為{an}的一個子數(shù)列.
(1)分別判斷下面兩個數(shù)列是否為(3,3)-數(shù)列,并說明理由:
數(shù)列A1:1,2,3,1,2,3,1,2,3;
數(shù)列A2:1,2,3,2,1,3,1;
(2)求證:G(k,2)=2k-1;
(3)求G(4,4)的值.
a
i
1
,
a
i
2
,
?
,
a
i
s
【考點(diǎn)】數(shù)列的應(yīng)用.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/4 8:0:9組卷:48引用:4難度:0.5
相似題
-
1.在當(dāng)前市場經(jīng)濟(jì)條件下,私營個體商店中的商品,所標(biāo)價格a與其實(shí)際價值之間,存在著相當(dāng)大的差距.對顧客而言,總是希望通過“討價還價”來減少商品所標(biāo)價格a與其實(shí)際價值的差距.設(shè)顧客第n次的還價為bn,商家第n次的討價為cn.有一種“對半討價還價”法如下:顧客第一次的還價為標(biāo)價a的一半,即第一次還價
,商家第一次的討價為b1與標(biāo)價a的平均值,即b1=a2;…;顧客第n次的還價為上一次商家的討價cn-1與顧客的還價bn-1的平均值,即c1=a+b12,商家第n次的討價為上一次商家的討價cn-1與顧客這一次的還價bn的平均值,即bn=cn-1+bn-12.現(xiàn)有一件衣服標(biāo)價1200元,若經(jīng)過n次的“對半討價還價”,bn與cn相差不到1元,則n最小值為( )cn=cn-1+bn2發(fā)布:2024/12/13 17:0:2組卷:173引用:7難度:0.5 -
2.2023年是我國規(guī)劃的收官之年,2022年11月23日全國22個省份的832個國家級貧困縣全部脫貧摘帽.利用電商平臺,開啟數(shù)字化科技優(yōu)勢,帶動消費(fèi)扶貧起到了重要作用.阿里研究院數(shù)據(jù)顯示,2013年全國淘寶村僅為20個,通過各地政府精準(zhǔn)扶貧,與電商平臺不斷合作創(chuàng)新,2014年、2015年、2016年全國淘寶村分別為212個、779個、1311個,從2017年起比上一年約增加1000個淘寶村,請你估計(jì)收官之年全國淘寶村的數(shù)量可能為( ?。?/h2>
發(fā)布:2024/12/18 13:30:2組卷:89引用:1難度:0.9 -
3.已知{an},{bn}為兩非零有理數(shù)列(即對任意的i∈N*,ai,bi均為有理數(shù)),{dn}為一無理數(shù)列(即對任意的i∈N*,di為無理數(shù)).
(1)已知bn=-2an,并且(an+bndn-andn2)(1+dn2)=0對任意的n∈N*恒成立,試求{dn}的通項(xiàng)公式.
(2)若{dn3}為有理數(shù)列,試證明:對任意的n∈N*,(an+bndn-andn2)(1+dn2)=1恒成立的充要條件為.an=11+dn6bn=dn31+dn6
(3)已知sin2θ=(0<θ<2425),dn=π2,試計(jì)算bn.3tan(n?π2+(-1)nθ)發(fā)布:2024/12/22 8:0:1組卷:189引用:3難度:0.1
把好題分享給你的好友吧~~