已知α∈(π2,π),且sin(α+π3)=1213,則sin(π6-α)+sin(2π3-α)=( ?。?/h1>
α
∈
(
π
2
,
π
)
sin
(
α
+
π
3
)
=
12
13
sin
(
π
6
-
α
)
+
sin
(
2
π
3
-
α
)
7 13 | - 17 13 | - 7 13 | 17 13 |
【考點(diǎn)】兩角和與差的三角函數(shù).
【答案】A
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/4 8:0:9組卷:162引用:3難度:0.5
相似題
-
1.已知tanα=1,tanβ=2,則tan(α-β)=( )
A. -13B. 13C.3 D.-3 發(fā)布:2025/1/7 22:30:4組卷:13引用:2難度:0.7 -
2.已知α,β,γ∈
,sinα+sinγ=sinβ,cosβ+cosγ=cosα,則下列說(shuō)法正確的是( )(0,π2)A. cos(β-α)=12B. cos(β-α)=-12C. β-α=π3D. β-α=-π3發(fā)布:2024/12/29 9:30:1組卷:96引用:6難度:0.6 -
3.已知α∈(
,π),sinα=π2,則tan(α+35)=( ?。?/h2>π4A. -17B.7 C. 17D.-7 發(fā)布:2024/12/29 12:30:1組卷:352引用:16難度:0.7