綜合與實踐:如圖1,已知△ABC,AB=AC,點D、E分別在邊AB、AC上,AD=AE,連接DC,點P、Q、M分別為DE、BC、DC的中點.
(1)觀察猜想.在圖1中,線段PM與QM的數(shù)量關系是 PM=QMPM=QM;
(2)探究證明.當∠BAC=60°,把△ADE繞點A順時針方向旋轉到圖2的位置,判斷△PMQ的形狀,并說明理由;
(3)拓展延伸.當∠BAC=90°,AB=AC=6,AD=AE=2,再連接BE,再取BE的中點N,把△ADE繞點A在平面內自由旋轉,如圖3.
①請你判斷四邊形PMQN的形狀,并說明理由;
②請直接寫出四邊形PMQN面積的最大值.
【考點】四邊形綜合題.
【答案】PM=QM
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/7/21 8:0:9組卷:790引用:5難度:0.2
相似題
-
1.如圖,∠BOD=45°,BO=DO,點A在OB上,四邊形ABCD是矩形,連接AC,BD交于點E,連接OE交AD于點F.下列4個判斷:①OE⊥BD;②∠ADB=30°;③DF=
AF;④若點G是線段OF的中點,則△AEG為等腰直角三角形,其中,判斷正確的是 .(填序號)2發(fā)布:2024/12/23 18:30:1組卷:1469引用:7難度:0.3 -
2.我們知道,一個正方形的任意3個頂點都可連成一個等腰三角形,進一步探究是否存在以下形狀的四邊形,它的任意3個頂點都可連成一個等腰三角形:
(1)不是正方形的平行四邊形;
(2)梯形;
(3)既不是平行四邊形,也不是梯形的四邊形.
如果存在滿足條件的四邊形,請分別畫出(只需各畫一個,并說明其形狀或邊、角關系特征,不必說明理由).發(fā)布:2025/1/2 8:0:1組卷:7引用:1難度:0.2 -
3.四邊形ABCD是矩形,點E是射線BC上一點,連接AC,DE.
(1)如圖1,點E在邊BC的延長線上,BE=AC,若∠ACB=40°,求∠E的度數(shù);
(2)如圖2,點E在邊BC的延長線上,BE=AC,若M是DE的中點,連接AM,CM,求證:AM⊥MC;
(3)如圖3,點E在邊BC上,射線AE交射線DC于點F,∠AED=2∠AEB,AF=4,AB=4,則CE=.(直接寫出結果)5發(fā)布:2024/12/23 18:30:1組卷:1410引用:10難度:0.4
把好題分享給你的好友吧~~