勾股定理是“人類(lèi)最偉大的十個(gè)科學(xué)發(fā)現(xiàn)之一”.我國(guó)對(duì)勾股定理的證明是由漢代的趙爽在注解《周髀算經(jīng)》時(shí)給出的,他用來(lái)證明勾股定理的圖案被稱(chēng)為“趙爽弦圖”.2002年在北京召開(kāi)的國(guó)際數(shù)學(xué)大會(huì)選它作為會(huì)徽.下列圖案中是“趙爽弦圖”的是( ?。?/h1>
【考點(diǎn)】勾股定理的證明.
【答案】B
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:2101引用:20難度:0.7
相似題
-
1.10.《時(shí)代數(shù)學(xué)學(xué)習(xí)》雜志2007年3月將改版為《時(shí)代學(xué)習(xí)報(bào)?數(shù)學(xué)周刊》,其徽標(biāo)是我國(guó)古代“弦圖”的變形(見(jiàn)示意圖).該圖可由直角三角形ABC繞點(diǎn)O同向連續(xù)旋轉(zhuǎn)三次(每次旋轉(zhuǎn)90°)而得.因此有“數(shù)學(xué)風(fēng)車(chē)”的動(dòng)感.假設(shè)中間小正方形的面積為1,整個(gè)徽標(biāo)(含中間小正方形)的面積為92,AD=2,則徽標(biāo)的外圍周長(zhǎng)為( ?。?/h2>
發(fā)布:2025/1/25 8:0:2組卷:354引用:2難度:0.6 -
2.用四個(gè)全等的直角三角形鑲嵌而成的正方形如圖所示,已知大正方形的面積為49,小正方形的面積為4,若x,y表示直角三角形的兩直角邊長(zhǎng)(x>y),給出下列四個(gè)結(jié)論正確的是 .(填序號(hào)即可)
①x-y=2;
②x2+y2=49;
③2xy=45;
④x+y=9.發(fā)布:2024/12/23 12:0:2組卷:446引用:3難度:0.6 -
3.“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國(guó)古代數(shù)學(xué)的驕傲如圖所示的“趙爽弦圖”是由四個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形.設(shè)直角三角形較長(zhǎng)直角邊長(zhǎng)為a,較短直角邊長(zhǎng)為b,若ab=8,大正方形的面積為25,則小正方形的邊長(zhǎng)為( ?。?/h2>
發(fā)布:2024/12/19 23:30:5組卷:1763引用:28難度:0.6