已知數(shù)列{an}中,a1=23,an>0,an≠1,且滿足an+1=2anan+1.
(1)求數(shù)列{an}的通項公式;
(2)令bn=(2n-1)(2n+1)an,求數(shù)列{bn}的前n項和Sn;
(3)在(2)的條件下,證明:4n>Sn.
a
1
=
2
3
,
a
n
>
0
,
a
n
≠
1
a
n
+
1
=
2
a
n
a
n
+
1
b
n
=
(
2
n
-
1
)
(
2
n
+
1
)
a
n
【考點(diǎn)】錯位相減法.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/12 8:0:9組卷:32引用:2難度:0.5
相似題
-
1.已知數(shù)列{an}是公差不為0的等差數(shù)列,前n項和為Sn,S9=144,a3是a1與a8的等比中項.
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{bn}滿足+log2bn=0,若cn=anbn,求數(shù)列{cn}前n項和為Tn.an-13發(fā)布:2024/12/29 12:0:2組卷:129引用:2難度:0.5 -
2.已知等差數(shù)列{an}的前n項和為Sn,且S5=
S2,a2n=2an+1,n∈N*.254
(1)求數(shù)列{an}的通項公式;
(2)若bn=2n-1+1,令cn=an?bn,求數(shù)列{cn}的前n項和Tn.發(fā)布:2024/12/29 6:0:1組卷:215引用:3難度:0.4 -
3.已知等差數(shù)列{an}的前n項和為Sn,且S4=4S2,a2n=2an+1(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)若,令cn=anbn,求數(shù)列{cn}的前n項和Tn.bn=3n-1發(fā)布:2024/12/29 5:30:3組卷:434引用:12難度:0.6
把好題分享給你的好友吧~~