當(dāng)前位置:
試題詳情
已知直線l的傾斜角為60°,在y軸上的截距為-4,則直線l的點(diǎn)斜式方程為 y+4=3(x-0)y+4=3(x-0);截距式方程為 x43+y-4=1x43+y-4=1;斜截式方程為 y=3x-4y=3x-4;一般式方程為 3x-y-4=03x-y-4=0.
3
3
x
4
3
y
-
4
x
4
3
y
-
4
3
3
3
3
【答案】y+4=(x-0);+=1;y=x-4;x-y-4=0
3
x
4
3
y
-
4
3
3
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/23 20:38:36組卷:24引用:6難度:0.9
相似題
-
1.數(shù)學(xué)家歐拉于1765年在他的著作《三角形的幾何學(xué)》中首次提出定理:三角形的外心(三邊中垂線的交點(diǎn))、重心(三邊中線的交點(diǎn))、垂心(三邊高的交點(diǎn))依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線被后人稱之為三角形的歐拉線.已知△ABC的頂點(diǎn)為A(0,0),B(5,0),C(2,4),則該三角形的歐拉線方程為( )
發(fā)布:2024/11/12 21:0:2組卷:731引用:10難度:0.5 -
2.已知0<k<4直線L:kx-2y-2k+8=0和直線M:2x+k2y-4k2-4=0與兩坐標(biāo)軸圍成一個(gè)四邊形,則這個(gè)四邊形面積最小值時(shí)k值為( ?。?/h2>
發(fā)布:2024/12/29 2:0:1組卷:324引用:7難度:0.7 -
3.數(shù)學(xué)家歐拉于1765年在他的著作《三角形的幾何學(xué)》中首次提出定理:三角形的外心(三邊中垂線的交點(diǎn))、重心(三邊中線的交點(diǎn))、垂心(三邊高的交點(diǎn))依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線被后人稱之為三角形的歐拉線.已知△ABC的頂點(diǎn)為A(0,0),B(5,0),C(2,4),則該三角形的歐拉線方程為( )
注:重心坐標(biāo)公式為橫坐標(biāo):;縱坐標(biāo):x1+x2+x33y1+y2+y33發(fā)布:2024/10/25 1:0:1組卷:69引用:1難度:0.6