當前位置:
試題詳情
已知F1(-c,0)、F2(c、0)分別是橢圓G:x2a2+y2b2=1(0<b<a<3)的左、右焦點,點P(2,2)是橢圓G上一點,且|PF1|-|PF2|=a.
(1)求橢圓G的方程;
(2)設直線l與橢圓G相交于A、B兩點,若OA⊥OB,其中O為坐標原點,判斷O到直線l的距離是否為定值?若是,求出該定值,若不是,請說明理由.
x
2
a
2
y
2
b
2
2
OA
OB
【考點】橢圓的幾何特征.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/5/23 20:38:36組卷:685引用:9難度:0.3
相似題
-
1.阿基米德(公元前287年-公元前212年)不僅是著名的物理學家,也是著名的數(shù)學家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓C的對稱軸為坐標軸,焦點在x軸上,且橢圓C的離心率為
,面積為8π,則橢圓C的方程為( )32發(fā)布:2024/12/29 12:0:2組卷:227引用:7難度:0.5 -
2.已知橢圓C的兩焦點分別為
、F1(-22,0),長軸長為6.F2(22,0)
(1)求橢圓C的標準方程;
(2)求以橢圓的焦點為頂點,以橢圓的頂點為焦點的雙曲線的方程.發(fā)布:2024/12/29 11:30:2組卷:434引用:6難度:0.8 -
3.已知橢圓
=1(a>b>0)的一個焦點為F(2,0),橢圓上一點P到兩個焦點的距離之和為6,則該橢圓的方程為( )x2a2+y2b2發(fā)布:2024/12/29 12:30:1組卷:12引用:2難度:0.7