已知橢圓C1:x2a2+y2b2=1(a>b>0)的左、右焦點為F1、F2,|F1F2|=22,若圓Q方程(x-2)2+(y-1)2=1,且圓心Q滿足|QF1|+|QF2|=2a.
(1)求橢圓C1的方程;
(2)過點P(0,1)的直線l1交橢圓C1于A、B兩點,過P與l1垂直的直線l2交圓Q于C、D兩點,M為線段CD中點,求△MAB的面積的取值范圍.
C
1
:
x
2
a
2
+
y
2
b
2
=
1
(
a
>
b
>
0
)
|
F
1
F
2
|
=
2
2
(
x
-
2
)
2
+
(
y
-
1
)
2
=
1
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/10/14 4:0:2組卷:100引用:2難度:0.4
相似題
-
1.設橢圓
+x2a2=1(a>b>0)的右頂點為A,上頂點為B.已知橢圓的離心率為y2b2,|AB|=53.13
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線l:y=kx(k<0)與橢圓交于P,Q兩點,直線l與直線AB交于點M,且點P,M均在第四象限.若△BPM的面積是△BPQ面積的2倍,求k的值.發(fā)布:2024/12/29 12:30:1組卷:4439引用:26難度:0.3 -
2.已知橢圓C:
=1(a>b>0)的一個頂點坐標為A(0,-1),離心率為x2a2+y2b2.32
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線y=k(x-1)(k≠0)與橢圓C交于不同的兩點P,Q,線段PQ的中點為M,點B(1,0),求證:點M不在以AB為直徑的圓上.發(fā)布:2024/12/29 12:30:1組卷:362引用:4難度:0.5 -
3.如果橢圓
的弦被點(4,2)平分,則這條弦所在的直線方程是( ?。?/h2>x236+y29=1發(fā)布:2024/12/18 3:30:1組卷:456引用:3難度:0.6
相關(guān)試卷