【問題初探】
(1)如圖1,等腰Rt△ABC中,AB=AC,點D為AB邊一點,以BD為腰向下作等腰Rt△BDE,∠DBE=90°.連接CD,CE,點F為CD的中點,連接AF.猜想并證明線段AF與CE的數(shù)量關(guān)系和位置關(guān)系.
【深入探究】
(2)在(1)的條件下,如圖2,將等腰Rt△BDE繞點B旋轉(zhuǎn),上述結(jié)論是否仍然成立?若成立,請證明;若不成立,請說明理由.
【拓展遷移】
(3)如圖3,等腰△ABC中,AB=AC,∠BAC=120°.在Rt△BDE中,∠DBE=90°,∠BDE=12∠BAC.連接CD,CE,點F為CD的中點,連接AF.Rt△BDE繞點B旋轉(zhuǎn)過程中,
①線段AF與CE的數(shù)量關(guān)系為:CE=23AFCE=23AF;
②若BC=413,BD=23,當點F在等腰△ABC內(nèi)部且∠BCF的度數(shù)最大時,線段AF的長度為 573573.
∠
BDE
=
1
2
∠
BAC
CE
=
2
3
AF
CE
=
2
3
AF
BC
=
4
13
BD
=
2
3
57
3
57
3
【考點】三角形綜合題.
【答案】;
CE
=
2
3
AF
57
3
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:881引用:4難度:0.1
相似題
-
1.已知直角△ABC,∠BAC=90°,D是斜邊BC的中點,E、F分別是AB、AC邊上的點,且DE⊥DF,連接EF.
(1)如圖1,求證:∠BED=∠AFD;
(2)如圖1,求證:BE2+CF2=EF2;
(3)如圖2,當∠ABC=45°,若BE=4,CF=3,求△DEF的面積.發(fā)布:2024/12/23 14:0:1組卷:181引用:3難度:0.2 -
2.一副三角板如圖1擺放,∠C=∠DFE=90°,∠B=30°,∠E=45°,點F在BC上,點A在DF上,且AF平分∠CAB,現(xiàn)將三角板DFE繞點F順時針旋轉(zhuǎn)(當點D落在射線FB上時停止旋轉(zhuǎn)).
(1)當∠AFD=°時,DF∥AC;當∠AFD=°時,DF⊥AB;
(2)在旋轉(zhuǎn)過程中,DF與AB的交點記為P,如圖2,若△AFP有兩個內(nèi)角相等,求∠APD的度數(shù);
(3)當邊DE與邊AB、BC分別交于點M、N時,如圖3,若∠AFM=2∠BMN,比較∠FMN與∠FNM的大小,并說明理由.發(fā)布:2024/12/23 18:30:1組卷:1678引用:10難度:0.1 -
3.已知A(0,4),B(-4,0),D(9,4),C(12,0),動點P從點A出發(fā),在線段AD上,以每秒1個單位的速度向點D運動:動點Q從點C出發(fā),在線段BC上,以每秒2個單位的速度向點B運動,點P、Q同時出發(fā),當其中一個點到達終點時,另一個點隨之停止運動,設(shè)運動時間為t(秒).
(1)當t=秒時,PQ平分線段BD;
(2)當t=秒時,PQ⊥x軸;
(3)當時,求t的值.∠PQC=12∠D發(fā)布:2024/12/23 15:0:1組卷:140引用:3難度:0.1
把好題分享給你的好友吧~~