如圖,在平面直角坐標系中,O為原點,F(xiàn)(1,0),過直線l:x=4左側且不在x軸上的動點P,作PH⊥l于點H,∠HPF的角平分線交x軸于點M,且|PH|=2|MF|,記動點P的軌跡為曲線C.
(1)求曲線C的方程;
(2)已知曲線C與x軸正半軸交于點A1,過點S(-4,0)的直線l1交C于A,B兩點,AS=λBS,點T滿足AT=λTB,其中λ<1,證明:∠A1TB=2∠TSO.
AS
=
λ
BS
AT
=
λ
TB
【考點】軌跡方程;直線與圓錐曲線的綜合.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:78引用:2難度:0.4
相似題
-
1.點P為△ABC所在平面內的動點,滿足
=t(AP),t∈(0,+∞),則點P的軌跡通過△ABC的( )AB|AB|cosB+AC|AC|cosC發(fā)布:2024/12/29 6:30:1組卷:100引用:3難度:0.7 -
2.已知兩個定點A(-2,0),B(1,0),如果動點P滿足|PA|=2|PB|.
(1)求點P的軌跡方程并說明該軌跡是什么圖形;
(2)若直線l:y=kx+1分別與點P的軌跡和圓(x+2)2+(y-4)2=4都有公共點,求實數(shù)k的取值范圍.發(fā)布:2024/12/29 10:30:1組卷:39引用:3難度:0.5 -
3.已知四棱錐P-ABCD的底面ABCD為正方形,PD⊥底面ABCD,且PD=AD=4,點E為BC的中點.四棱錐P-ABCD的所有頂點都在同一個球面上,點M是該球面上的一動點,且PM⊥AE,則點M的軌跡的長度為( )
發(fā)布:2024/12/29 8:0:12組卷:14引用:1難度:0.6