某大學(xué)選拔新生補(bǔ)充進(jìn)“籃球”“電子競技”“國學(xué)”三個社團(tuán),據(jù)資料統(tǒng)計,新生通過考核選拔進(jìn)入這三個社團(tuán)成功與否相互獨(dú)立.某新生入學(xué),假設(shè)他通過考核選拔進(jìn)入該校的“籃球”“電子競技”“國學(xué)”三個社團(tuán)的概率依次為m,13,n,已知三個社團(tuán)他都能進(jìn)入的概率為124,至少進(jìn)入一個社團(tuán)的概率為34,且m>n,則m+n=( ?。?/h1>
1
3
1
24
3
4
【考點(diǎn)】相互獨(dú)立事件和相互獨(dú)立事件的概率乘法公式.
【答案】C
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:65引用:4難度:0.8
相似題
-
1.甲、乙兩人進(jìn)行圍棋比賽,共比賽2n(n∈N*)局,且每局甲獲勝的概率和乙獲勝的概率均為
.如果某人獲勝的局?jǐn)?shù)多于另一人,則此人贏得比賽.記甲贏得比賽的概率為P(n),則( ?。?/h2>12發(fā)布:2024/12/29 12:0:2組卷:242引用:6難度:0.6 -
2.小王同學(xué)進(jìn)行投籃練習(xí),若他第1球投進(jìn),則第2球投進(jìn)的概率為
;若他第1球投不進(jìn),則第2球投進(jìn)的概率為23.若他第1球投進(jìn)概率為13,他第2球投進(jìn)的概率為( ?。?/h2>23發(fā)布:2024/12/29 12:0:2組卷:293引用:5難度:0.7 -
3.某市在市民中發(fā)起了無償獻(xiàn)血活動,假設(shè)每個獻(xiàn)血者到達(dá)采血站是隨機(jī)的,并且每個獻(xiàn)血者到達(dá)采血站和其他的獻(xiàn)血者到達(dá)采血站是相互獨(dú)立的.在所有人中,通常45%的人的血型是O型,如果一天內(nèi)有10位獻(xiàn)血者到達(dá)采血站獻(xiàn)血,用隨機(jī)模擬的方法來估計一下,這10位獻(xiàn)血者中至少有4位的血型是O型的概率.
發(fā)布:2024/12/29 11:0:2組卷:1引用:1難度:0.7
把好題分享給你的好友吧~~