設(shè)函數(shù)f(x)的定義域為D,若存在正實數(shù)a,使得對于任意x∈D,總有x+a∈D,且f(x+a)>f(x),則稱f(x)是D上的“a距增函數(shù)”.
(1)判斷函數(shù)f(x)=x2+x是否為(0,+∞)上的“1距增函數(shù)”,并說明理由;
(2)判斷函數(shù)f(x)=x,x≤1 lgx,x>1
是否為R上的“8距增函數(shù)”,并說明理由;
(3)已知f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=x+b.若f(x)為R上的“2021距增函數(shù)”,求b的取值范圍.
x , x ≤ 1 |
lgx , x > 1 |
【考點】分段函數(shù)的應(yīng)用.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:15引用:1難度:0.6
相似題
-
1.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時,f(x)=e-x(x-1).則下列結(jié)論正確的是( ?。?/h2>
發(fā)布:2024/12/20 4:30:1組卷:295引用:9難度:0.5 -
2.德國著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其名命名的函數(shù)f(x)=
稱為狄利克雷函數(shù),關(guān)于函數(shù)f(x)有以下四個命題:1,x∈Q0,x∈?RQ
①f(f(x))=1;
②函數(shù)f(x)是偶函數(shù);
③任意一個非零有理數(shù)T,f(x+T)=f(x)對任意x∈R恒成立;
④存在三個點A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC為等邊三角形.
其中真命題的序號為.(寫出所有正確命題的序號)發(fā)布:2024/12/22 8:0:1組卷:22引用:2難度:0.5 -
3.德國著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其名命名的函數(shù)f(x)=
被稱為狄利克雷函數(shù),則關(guān)于函數(shù)f(x)有以下四個命題:1,x∈Q0,x∈?RQ
①f(f(x))=0;
②函數(shù)f(x)是偶函數(shù);
③任意一個非零有理數(shù)T,f(x+T)=f(x)對任意x∈R恒成立;
④存在三個點A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC為等邊三角形.
其中真命題的個數(shù)是( ?。?/h2>發(fā)布:2024/12/22 8:0:1組卷:58引用:4難度:0.7
把好題分享給你的好友吧~~