從x2m-y2n=1(其中m,n∈{-1,2,3})所表示的圓錐曲線(圓、橢圓、雙曲線、拋物線)方程中任取一個,則此方程是焦點在x軸上的雙曲線方程的概率為( ?。?/h1>
x
2
m
-
y
2
n
=
1
【答案】B
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:749引用:16難度:0.9
相似題
-
1.設橢圓C1的離心率為
,焦點在x軸上且長軸長為26,若曲線C2上的點到C1的兩個焦點的距離的差的絕對值為8,則曲線C2的標準方程為( ?。?/h2>513發(fā)布:2024/10/10 14:0:1組卷:315引用:10難度:0.9 -
2.與橢圓
有公共焦點,且離心率e=x225+y216=1的雙曲線的方程為( ?。?/h2>32發(fā)布:2024/12/7 1:30:1組卷:474引用:3難度:0.7 -
3.與橢圓C:
共焦點且過點x225+y216=1的雙曲線的標準方程為( )P(2,2)發(fā)布:2024/10/18 21:0:1組卷:1240引用:9難度:0.8
把好題分享給你的好友吧~~