已知函數(shù)f(x)=lnx+ax的最大值是12.
(1)求實數(shù)a的值;
(2)設(shè)函數(shù)g(x)=ex2,若?x>0,使g(x)≤f(x)+k,求實數(shù)k的取值范圍.
f
(
x
)
=
lnx
+
a
x
1
2
g
(
x
)
=
e
x
2
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/16 8:0:9組卷:61引用:4難度:0.4
相似題
-
1.已知函數(shù)
,當(dāng)x∈(0,+∞)時,f(x)≥0恒成立,則實數(shù)a的取值范圍是( ?。?/h2>f(x)=e2x-2lnx+ax+1x2A.(-∞,1] B.(-∞,e2-1] C.(-∞,e] D.(-∞,2] 發(fā)布:2024/12/20 10:0:1組卷:66引用:2難度:0.5 -
2.函數(shù)f(x)是定義在(0,+∞)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f'(x),且滿足
,若不等式f′(x)+2xf(x)>0在x∈(1,+∞)上恒成立,則實數(shù)a的取值范圍是( )ax?f(ax)lnx≥f(lnx)?lnxaxA. (0,1e]B. [1e,+∞)C.(0,e] D. (1e,+∞)發(fā)布:2024/12/20 7:0:1組卷:222引用:6難度:0.6 -
3.若存在x0∈[-1,2],使不等式x0+(e2-1)lna≥
+e2x0-2成立,則a的取值范圍是( ?。?/h2>2aex0A.[ ,e2]12eB.[ ,e2]1e2C.[ ,e4]1e2D.[ ,e4]1e發(fā)布:2024/12/20 6:0:1組卷:262引用:9難度:0.4
把好題分享給你的好友吧~~