【閱讀材料】配方法是數(shù)學(xué)中重要的一種思想方法.它是指將一個(gè)式子的某一部分通過(guò)恒等變形化為完全平方式或幾個(gè)完全平方式的和的方法.這種方法常被用到代數(shù)式的變形中,并結(jié)合非負(fù)數(shù)的意義來(lái)解決一些問(wèn)題.
我們定義:一個(gè)整數(shù)能表示成a2+b2(a、b是整數(shù))的形式,則稱這個(gè)數(shù)為“完美數(shù)”.例如,5是“完美數(shù)”.理由:因?yàn)?=22+12,所以5是“完美數(shù)”.
【解決問(wèn)題】
(1)數(shù)61 是是“完美數(shù)”(填“是”或“不是”);
【探究問(wèn)題】
(2)已知x2+2y2-4x+4y+6=0,則x+y=11;
(3)已知S=5x2+y2+2xy+12x+k(x、y是整數(shù),k是常數(shù)),要使S為“完美數(shù)”,試求出符合條件的k值,并說(shuō)明理由.
【拓展結(jié)論】
(4)已知x、y滿足-x2+23x-y+1=0,求7x-3y的最小值.
2
3
【答案】是;1
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/9 8:0:8組卷:338引用:3難度:0.5
把好題分享給你的好友吧~~