已知函數(shù)f(x)=3sin(ωx+π6)+2sin2(ωx2+π12)-1 (ω>0)的相鄰兩對(duì)稱軸間的距離為π2.
(1)求f(x)的解析式;
(2)將函數(shù)f(x)的圖象向右平移π6個(gè)單位長(zhǎng)度,再把橫坐標(biāo)縮小為原來(lái)的12(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,當(dāng)x∈[-π12,π6]時(shí),求函數(shù)g(x)的值域.
(3)對(duì)于第(2)問(wèn)中的函數(shù)g(x),記方程g(x)=43在x∈[π6,4π3]上的根從小到依次為x1,x2,?,xn,試確定n的值,并求x1+2x2+2x3+?+2xn-1+xn的值.
f
(
x
)
=
3
sin
(
ωx
+
π
6
)
+
2
si
n
2
(
ωx
2
+
π
12
)
-
1
(
ω
>
0
)
π
2
π
6
1
2
x
∈
[
-
π
12
,
π
6
]
g
(
x
)
=
4
3
x
∈
[
π
6
,
4
π
3
]
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:298引用:3難度:0.5
把好題分享給你的好友吧~~