計(jì)算機(jī)能力考試分理論考試與實(shí)際操作兩部分,每部分考試成績只記“合格”與“不合格”,兩部分考試都“合格”者,則計(jì)算機(jī)考試“合格”,并頒發(fā)合格證書.甲、乙、丙三人在理論考試中“合格”的概率依次為45,34,23,在實(shí)際操作考試中“合格”的概率依次為12,23,56,所有考試是否合格相互之間沒有影響.
(1)假設(shè)甲、乙、丙三人同時(shí)進(jìn)行計(jì)算機(jī)理論與實(shí)際操作兩項(xiàng)考試,誰獲得合格證書的可能性最大?
(2)這三人進(jìn)行計(jì)算機(jī)理論與實(shí)際操作兩項(xiàng)考試后,求恰有兩人獲得合格證書的概率.
4
5
3
4
2
3
1
2
2
3
5
6
【考點(diǎn)】相互獨(dú)立事件和相互獨(dú)立事件的概率乘法公式.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:1263引用:23難度:0.7
相似題
-
1.甲、乙兩人進(jìn)行圍棋比賽,共比賽2n(n∈N*)局,且每局甲獲勝的概率和乙獲勝的概率均為
.如果某人獲勝的局?jǐn)?shù)多于另一人,則此人贏得比賽.記甲贏得比賽的概率為P(n),則( )12發(fā)布:2024/12/29 12:0:2組卷:242引用:6難度:0.6 -
2.小王同學(xué)進(jìn)行投籃練習(xí),若他第1球投進(jìn),則第2球投進(jìn)的概率為
;若他第1球投不進(jìn),則第2球投進(jìn)的概率為23.若他第1球投進(jìn)概率為13,他第2球投進(jìn)的概率為( ?。?/h2>23發(fā)布:2024/12/29 12:0:2組卷:293引用:5難度:0.7 -
3.某市在市民中發(fā)起了無償獻(xiàn)血活動(dòng),假設(shè)每個(gè)獻(xiàn)血者到達(dá)采血站是隨機(jī)的,并且每個(gè)獻(xiàn)血者到達(dá)采血站和其他的獻(xiàn)血者到達(dá)采血站是相互獨(dú)立的.在所有人中,通常45%的人的血型是O型,如果一天內(nèi)有10位獻(xiàn)血者到達(dá)采血站獻(xiàn)血,用隨機(jī)模擬的方法來估計(jì)一下,這10位獻(xiàn)血者中至少有4位的血型是O型的概率.
發(fā)布:2024/12/29 11:0:2組卷:1引用:1難度:0.7
把好題分享給你的好友吧~~