著名數(shù)學(xué)家高斯曾說過:“如果別人思考數(shù)學(xué)的真理像我一樣深入持久,他也會找到我的發(fā)現(xiàn)”,我們向偉人看齊,將這種勤思善學(xué)、礪能篤行的精神運用于日常的數(shù)學(xué)學(xué)習(xí)中來,嘗試發(fā)現(xiàn)新的驚喜.
【提出問題】
我們曾探究過一元二次方程根與系數(shù)的關(guān)系,如果一元二次方程的系數(shù)按照某種規(guī)律發(fā)生變化,原方程的根與新方程的根是否也會產(chǎn)生某種聯(lián)系?
【構(gòu)造關(guān)系】
將一元二次方程的二次項系數(shù)、一次項系數(shù)和常數(shù)項按照n:1:1n的比例放大或縮小,其中n≠0,我們稱新方程為原方程的“系變方程”,系變倍數(shù)為n.
(1)當(dāng)系變倍數(shù)為3時,求解一元二次方程x2+2x-3=0的“系變方程”.
【自能探究】
(2)已知某一元二次方程有兩個實數(shù)根x1,x2,當(dāng)n=2時,其“系變方程”也有兩個實數(shù)根p、q,且x1x2=1,求qp+pq-(4p+14q)+17的最小值.
(3)已知關(guān)于x的方程(3x2+tx-2)2+(-2x2-tx+3)2=(x2+1)2有四個實數(shù)根x1、x2、x3、x4,問是否存在定值k,對于任意實數(shù)t,都滿足x1x2=x3x4=k,若存在,請求出k的值;若不存在,請說明理由.
1
n
q
p
p
q
4
p
1
4
q
x
1
x
2
x
3
x
4
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/7 16:0:8組卷:261引用:2難度:0.5
相似題
-
1.已知關(guān)于x的一元二次方程x2+5x-m=0的一個根是2,則另一個根是 .
發(fā)布:2024/12/23 9:30:1組卷:1713引用:19難度:0.6 -
2.解答下列各題:
(1)計算:tan45°+-2-2-(π-1)0+|-(sin60°-1)2|3
(2)已知x1=1是關(guān)于x的一元二次方程x2+(2m-1)x+m2=0的一個根,求m的值及方程的另一個根.發(fā)布:2024/12/26 8:0:1組卷:76引用:2難度:0.7 -
3.若x1,x2是一元二次方程x2-5x+6=0的兩個根,則x1+x2,x1x2的值分別是( ?。?/h2>
發(fā)布:2025/1/4 0:30:3組卷:424引用:4難度:0.7