某市教育行政部門為了了解在校學生某一學年體育課時間與期末體育測試成績的關(guān)系,現(xiàn)隨機抽取了8所學校進行調(diào)研,得到8所學校該學年學生體育課時間平均值x(單位:小時)以及期末體育測試成績得分平均值y(單位:分),數(shù)據(jù)如表:
學校編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
學生體育課時間平均值x (單位:小時) |
100 | 95 | 93 | 83 | 82 | 75 | 70 | 62 |
學生體育成績平均值y (單位:分) |
86.5 | 83.5 | 83.5 | 81.5 | 80.5 | 79.5 | 77.5 | 76.5 |
(2)下一學年該市教育部門準備從8所學校中抽取2所進行體育觀摩教學,求抽取的2所學校學生體育課時間平均值都超過80小時的概率.
參考公式:
?
b
=
n
∑
i
=
1
(
x
i
-
x
)
(
y
i
-
y
)
n
∑
i
=
1
(
x
i
-
x
)
2
=
n
∑
i
=
1
x
i
y
i
-
n
x
?
y
n
∑
i
=
1
x
2
i
-
n
x
2
?
a
=
y
-
?
b
x
參考數(shù)據(jù):
8
∑
i
=
1
x
i
y
i
=
53844
n
∑
i
=
1
x
2
i
=
55656
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/14 8:0:9組卷:8引用:1難度:0.5
相似題
-
1.某科研機構(gòu)為了了解氣溫對蘑菇產(chǎn)量的影響,隨機抽取了某蘑菇種植大棚12月份中5天的日產(chǎn)量y(單位:kg)與該地當日的平均氣溫x(單位:℃)的數(shù)據(jù),得到如圖散點圖:
其中A(3,2),B(5,10),C(8,11),D(9,13),E(10,14).
(1)求出y關(guān)于x的線性回歸方程;
(2)若該地12月份某天的平均氣溫為6℃,用(1)中所求的回歸方程預測該蘑菇種植大棚當日的產(chǎn)量.
附:線性回歸直線方程中,?y=?bx+?a,?b=n∑i=1xiyi-nxyn∑i=1x2i-nx2.?a=y-?bx發(fā)布:2024/12/29 11:30:2組卷:103引用:3難度:0.7 -
2.某農(nóng)科所對冬季晝夜溫差(最高溫度與最低溫度的差)大小與某反季節(jié)大豆新品種一天內(nèi)發(fā)芽數(shù)之間的關(guān)系進行了分析研究,他們分別記錄了12月1日至12月6日每天晝夜最高、最低的溫度(如圖1),以及實驗室每天每100顆種子中的發(fā)芽數(shù)情況(如圖2),得到如下資料:
(1)請畫出發(fā)芽數(shù)y與溫差x的散點圖;
(2)若建立發(fā)芽數(shù)y與溫差x之間的線性回歸模型,請用相關(guān)系數(shù)說明建立模型的合理性;
(3)①求出發(fā)芽數(shù)y與溫差x之間的回歸方程(系數(shù)精確到0.01);?y=?a+?bx
②若12月7日的晝夜溫差為8℃,通過建立的y關(guān)于x的回歸方程,估計該實驗室12月7日當天100顆種子的發(fā)芽數(shù).
參考數(shù)據(jù):=2051,6∑i=1xi=75,6∑i=1yi=162,6∑i=1xiyi≈4.2,6∑i=1xi2-6x2≈6.5.6∑i=1yi2-6y2
參考公式:
相關(guān)系數(shù):r=(當|r|>0.75時,具有較強的相關(guān)關(guān)系).n∑i=1xiyi-nx?y(n∑i=1xi2-nx2)(n∑i=1yi2-ny2)
回歸方程中斜率和截距計算公式:?y=?a+?bx=?b,n∑i=1xiyi-nx?yn∑i=1xi2-nx2=?ay-?b.x發(fā)布:2024/12/29 12:0:2組卷:181引用:5難度:0.5 -
3.兩個線性相關(guān)變量x與y的統(tǒng)計數(shù)據(jù)如表:
x 9 9.5 10 10.5 11 y 11 10 8 6 5 =?yx+40,則相應于點(9,11)的殘差為 .?b發(fā)布:2024/12/29 12:0:2組卷:112引用:8難度:0.7
相關(guān)試卷