如圖所示,四邊形ABCD是圓臺(tái)EF的軸截面,M是上底面圓周上異于C,D的一點(diǎn),圓臺(tái)的高EF=3,AB=2CD=4.
(1)證明:△AMB是直角三角形;
(2)是否存在點(diǎn)M使得平面ADM與平面DME的夾角的余弦值為55?若存在,求出點(diǎn)M的位置;若不存在,請(qǐng)說(shuō)明理由.
?
EF
=
3
5
5
【考點(diǎn)】二面角的平面角及求法.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/23 10:0:2組卷:57引用:4難度:0.4
相似題
-
1.正四棱錐P-ABCD,底面四邊形ABCD為邊長(zhǎng)為2的正方形,
,其內(nèi)切球?yàn)榍騁,平面α過(guò)AD與棱PB,PC分別交于點(diǎn)M,N,且與平面ABCD所成二面角為30°,則平面α截球G所得的圖形的面積為 .PA=5發(fā)布:2024/12/5 8:30:6組卷:159引用:4難度:0.5 -
2.如圖,在直三棱柱ABC-A1B1C1中,AA1=AC=4,AB=3,BC=5,點(diǎn)D是線段BC的中點(diǎn).
(1)求證:AB⊥A1C;
(2)求二面角D-CA1-A的余弦值.發(fā)布:2024/11/30 13:0:1組卷:321引用:5難度:0.6 -
3.如圖,在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為4的正方形,△PAD是等邊三角形,CD⊥平面PAD,E,F(xiàn),G,O分別是PC,PD,BC,AD的中點(diǎn).
(1)求證:PO⊥平面ABCD;
(2)求平面EFG與平面ABCD的夾角的大??;
(3)線段PA上是否存在點(diǎn)M,使得直線GM與平面EFG所成角為,若存在,求線段PM的長(zhǎng);若不存在,說(shuō)明理由.π6發(fā)布:2024/12/7 16:30:5組卷:520引用:9難度:0.6
把好題分享給你的好友吧~~