【材料閱讀】
我們曾解決過課本中的這樣一道題目:
如圖1,四邊形ABCD是正方形,E為BC邊上一點,延長BA至F,使AF=CE,連接DE,DF.……
提煉1:△ECD繞點D順時針旋轉90°得到△FAD;
提煉2:△ECD≌△FAD;
提煉3:旋轉、平移、軸對稱是圖形全等變換的三種方式.
【問題解決】
(1)如圖2,四邊形ABCD是正方形,E為BC邊上一點,連接DE,將△CDE沿DE折疊,點C落在G處,EG交AB于點F,連接DF.
可得:∠EDF=4545°;AF,F(xiàn)E,EC三者間的數(shù)量關系是AF+EC=FEAF+EC=FE.
(2)如圖3,四邊形ABCD的面積為8,AB=AD,∠DAB=∠BCD=90°,連接AC.求AC的長度.
(3)如圖4,在△ABC中,∠ACB=90°,CA=CB,點D,E在邊AB上,∠DCE=45°.寫出AD,DE,EB間的數(shù)量關系,并證明.
【考點】幾何變換綜合題.
【答案】45;AF+EC=FE
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:1702引用:4難度:0.3
相似題
-
1.如圖,在等邊△ABC中,點D在BC邊上,點E在AC的延長線上,且DE=DA.
(1)求證:∠BAD=∠EDC;
(2)點E關于直線BC的對稱點為M,聯(lián)結DM,AM.
①根據(jù)題意將圖補全;
②在點D運動的過程中,DA和AM有什么數(shù)量關系并證明.發(fā)布:2024/12/23 14:0:1組卷:259引用:2難度:0.2 -
2.如圖(1),在矩形ABCD中,AB=6,BC=2
,點O是AB的中點,點P在AB的延長線上,且BP=3.一動點E從O點出發(fā),以每秒1個單位長度的速度沿OA勻速運動,到達A點后,立即以原速度沿AO返回;另一動點F從P點出發(fā),以每秒1個單位長度的速度沿射線PA勻速運動,點E、F同時出發(fā),當兩點相遇時停止運動,在點E、F的運動過程中,如圖(2)以EF為邊作等邊△EFG,使△EFG和矩形ABCD在射線PA的同側.設運動的時間為t秒(t>0).3
(1)如圖(3),當?shù)冗叀鱁FG的邊FG恰好經(jīng)過點C時,求運動時間t的值;
(2)如圖(4),當?shù)冗叀鱁FG的頂點G恰好落在CD邊上時,求運動時間t的值;
(3)在整個運動過程中,設等邊△EFG和矩形ABCD重疊部分的面積為S,請求出S與t之間的函數(shù)關系式,并寫出相應的自變量,的取值范圍.發(fā)布:2025/1/13 8:0:2組卷:357引用:2難度:0.5 -
3.如圖,點M為矩形ABCD的邊BC上一點,將矩形ABCD沿AM折疊,使點B落在邊CD上的點E處,EB交AM于點F,在EA上取點G,使EG=EC.若GF=6,sin∠GFE=
,則AB=.45發(fā)布:2024/12/23 8:0:23組卷:414引用:2難度:0.1