試卷征集
加入會(huì)員
操作視頻

上數(shù)學(xué)課時(shí),王老師在講完乘法公式(a±b)2=a2±2ab+b2的多種運(yùn)用后,要求同學(xué)們運(yùn)用所學(xué)知識(shí)解答:求代數(shù)式x2+4x+5的最小值?同學(xué)們經(jīng)過(guò)交流、討論,最后總結(jié)出如下解答方法:
解:x2+4x+5=x2+4x+4+1=(x+2)2+1
∵(x+2)2≥0,
∴當(dāng)x=-2時(shí),(x+2)2的值最小,最小值是0,
∴(x+2)2+1≥1
∴當(dāng)(x+2)2=0時(shí),(x+2)2的值最小,最小值是1,
∴x2+4x+5的最小值是1.
請(qǐng)你根據(jù)上述方法,解答下列各題
(1)知識(shí)再現(xiàn):當(dāng)x=
3
3
時(shí),代數(shù)式x2-6x+12的最小值是
3
3
;
(2)知識(shí)運(yùn)用:若y=-x2+2x-3,當(dāng)x=
1
1
時(shí),y有最
值(填“大”或“小”),這個(gè)值是
-2
-2
;
(3)知識(shí)拓展:若-x2+3x+y+5=0,求y+x的最小值.

【答案】3;3;1;大;-2
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/27 8:0:10組卷:421引用:6難度:0.6
相似題
  • 1.已知代數(shù)式-a2+2a-1,無(wú)論a取任何值,它的值一定是( ?。?/h2>

    發(fā)布:2024/12/12 8:0:1組卷:108引用:3難度:0.7
  • 2.若把代數(shù)式x2+2x-2化為(x+m)2+k的形式,其中m,k為常數(shù),則m+k的值為( ?。?/h2>

    發(fā)布:2024/12/16 14:30:3組卷:102引用:3難度:0.9
  • 3.已知a,b,c滿足4a2+2b-4=0,b2-4c+1=0,c2-12a+17=0,則a2+b2+c2等于(  )

    發(fā)布:2024/12/23 12:30:2組卷:357引用:9難度:0.4
APP開(kāi)發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正