如圖,拋物線y=-34x2-94x+3與坐標(biāo)軸分別交于A,B,C三點(diǎn),M是第二象限內(nèi)拋物線上的一動(dòng)點(diǎn)且橫坐標(biāo)為m.
(1)求B點(diǎn)的坐標(biāo)及直線AC的解析式為 (1,0)(1,0),y=34x+3y=34x+3.
(2)連接BM,交線段AC于點(diǎn)D,求S△ADMS△ADB的最大值;
(3)連接CM,是否存在點(diǎn)M,使得∠ACO+2∠ACM=90°,若存在,求m的值.若不存在,請(qǐng)說明理由.
y
=
-
3
4
x
2
-
9
4
x
+
3
y
=
3
4
x
+
3
y
=
3
4
x
+
3
S
△
ADM
S
△
ADB
【考點(diǎn)】二次函數(shù)綜合題.
【答案】(1,0);
y
=
3
4
x
+
3
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:501引用:5難度:0.1
相似題
-
1.如圖,二次函數(shù)y=-x2+bx+c的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C.已知B(3,0),C(0,4),連接BC.
(1)b=,c=;
(2)點(diǎn)M為直線BC上方拋物線上一動(dòng)點(diǎn),當(dāng)△MBC面積最大時(shí),求點(diǎn)M的坐標(biāo);
(3)①點(diǎn)P在拋物線上,若△PAC是以AC為直角邊的直角三角形,求點(diǎn)P的橫坐標(biāo);
②在拋物線上是否存在一點(diǎn)Q,連接AC,使∠QBA=2∠ACO,若存在,直接寫出點(diǎn)Q的橫坐標(biāo);若不存在,請(qǐng)說明理由.發(fā)布:2024/12/23 11:0:1組卷:604引用:2難度:0.2 -
2.如圖,我們把一個(gè)半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點(diǎn)A、B、C、D分別是“果圓”與坐標(biāo)軸的交點(diǎn),拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個(gè)“果圓”被y軸截得的弦CD的長(zhǎng)為.
發(fā)布:2024/12/23 17:30:9組卷:3611引用:36難度:0.4 -
3.已知,如圖1,過點(diǎn)E(0,-1)作平行于x軸的直線l,拋物線y=
x2上的兩點(diǎn)A、B的橫坐標(biāo)分別為-1和4,直線AB交y軸于點(diǎn)F,過點(diǎn)A、B分別作直線l的垂線,垂足分別為點(diǎn)C、D,連接CF、DF.14
(1)求點(diǎn)A、B、F的坐標(biāo);
(2)求證:CF⊥DF;
(3)點(diǎn)P是拋物線y=x2對(duì)稱軸右側(cè)圖象上的一動(dòng)點(diǎn),過點(diǎn)P作PQ⊥PO交x軸于點(diǎn)Q,是否存在點(diǎn)P使得△OPQ與△CDF相似?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.14發(fā)布:2024/12/23 11:30:2組卷:469引用:24難度:0.1
把好題分享給你的好友吧~~