《第9章 平面向量》2013年單元測(cè)試卷
發(fā)布:2024/12/12 6:30:2
一、選擇題
-
1.設(shè)
、a、b是單位向量,且c,則a?b=0?(a-c)的最小值為( ?。?/h2>(b-c)組卷:1763引用:34難度:0.9 -
2.已知向量
=(2,1),a=10,|a?b+a|=b,則|52|=( ?。?/h2>b組卷:5238引用:104難度:0.9 -
3.平面向量
與a的夾角為60°,b=(2,0),|a|=1,則|b+2a|=( ?。?/h2>b組卷:2387引用:135難度:0.9 -
4.在△ABC中,M是BC的中點(diǎn),AM=1,點(diǎn)P在AM上且滿足
,則PA=-2PM等于( ?。?/h2>PA?(PB+PC)組卷:265引用:8難度:0.9 -
5.已知向量
=(-3,2),a=(-1,0),若λb+a與b-2a垂直,則實(shí)數(shù)λ的值為( ?。?/h2>b組卷:453引用:21難度:0.9 -
6.設(shè)D、E、F分別是△ABC的三邊BC、CA、AB上的點(diǎn),且
,DC=2BD,CE=2EA,則AF=2FB與AD+BE+CF( ?。?/h2>BC組卷:977引用:19難度:0.9 -
7.已知
,a是平面內(nèi)兩個(gè)互相垂直的單位向量,若向量b滿足(c-a)?(c-b)=0,則|c|的最大值是( ?。?/h2>c組卷:1871引用:20難度:0.9 -
8.已知O是△ABC所在平面內(nèi)一點(diǎn),D為BC邊中點(diǎn),且
,那么( ?。?/h2>2OA+OB+OC=0組卷:2700引用:72難度:0.9 -
9.設(shè)
,a=(4,3)在a上的投影為b,522在x軸上的投影為2,且b,則|b|≤14為( )b組卷:787引用:13難度:0.9 -
10.設(shè)
是非零向量,若函數(shù)a,b的圖象是一條直線,則必有( ?。?/h2>f(x)=(xa+b)?(a-xb)組卷:81引用:19難度:0.9 -
11.設(shè)兩個(gè)向量
=(λ+2,λ2-cos2α)和a=(m,b+sinα),其中λ,m,α為實(shí)數(shù).若m2=2a,則b的取值范圍是( ?。?/h2>λm組卷:221引用:4難度:0.5 -
12.已知
=(1,n),a=(-1,n),若2b-a與b垂直,則|b|=( ?。?/h2>a組卷:571引用:38難度:0.9 -
13.如圖,已知正六邊形P1P2P3P4P5P6,下列向量的數(shù)量積中最大的是( ?。?/h2>
組卷:639引用:27難度:0.9 -
14.已知向量
,|a≠e|=1,對(duì)任意t∈R,恒有|e-ta|≥|e-a|,則( )e組卷:1214引用:21難度:0.9 -
15.已知向量
,OA的夾角為OB,π3,|OA|=4,若點(diǎn)M在直線OB上,則|OB|=1的最小值為( ?。?/h2>|OA-OM|組卷:89引用:1難度:0.5 -
16.在平行四邊形ABCD中,
,CE與BF相交于G點(diǎn).若AE=13AB,AF=14AD,則AB=a,AD=b=( ?。?/h2>AG組卷:316引用:5難度:0.9 -
17.設(shè)向量
與a的夾角為θ,b,a=(2,1),則cosθ等于( ?。?/h2>a+2b=(4,5)組卷:22引用:2難度:0.7
三、解答題
-
52.設(shè)向量
,a=(1,cos2θ),b=(2,1),c=(4sinθ,1),其中θ∈(0,d=(12sinθ,1)).π4
(1)求的取值范圍;a?b-c?d
(2)若函數(shù)f(x)=|x-1|,比較f()與f(a?b)的大小.c?d組卷:145引用:20難度:0.3 -
53.已知銳角△ABC三個(gè)內(nèi)角分別為A,B,C向量
與向量p=(2-2sinA,cosA+sinA)是共線向量.q=(sinA-cosA,1+sinA)
(1)求∠A的值;
(2)求函數(shù)y=2sin2B+cos的值域.C-3B2組卷:206引用:1難度:0.3