2021-2022學(xué)年江西省上饒市六校高二(下)期末數(shù)學(xué)試卷(文科)
發(fā)布:2024/12/31 22:0:2
一、選擇題:本大題共12小題,每小題5分,共60分
-
1.若復(fù)數(shù)z滿足(2-i)?z=4+3i,其中i為虛數(shù)單位,則z的共軛復(fù)數(shù)為( )
組卷:22引用:2難度:0.8 -
2.若p:log2x≤2,q:x2-4x+3<0,則p是q的( )
組卷:73引用:2難度:0.6 -
3.已知
,且a=(1,λ),b=(2,λ+2)與a共線,則λ=( ?。?/h2>b組卷:61引用:2難度:0.7 -
4.已知a=log53,b=log30.2,c=π0.2,則( ?。?/h2>
組卷:58引用:1難度:0.7 -
5.在區(qū)間[-2,3]上任取一個(gè)數(shù)x,則x∈[1,4]的概率為( )
組卷:60引用:2難度:0.8 -
6.設(shè)實(shí)數(shù)x,y滿足約束條件
,則x+2y的最大值為( )x-y-1≤02x+y-2≥0y-2≤0組卷:28引用:1難度:0.6 -
7.已知圓錐的軸截面是邊長(zhǎng)為1的等邊三角形,則該圓錐表面積為( ?。?/h2>
組卷:34引用:2難度:0.7
[選做題]
-
22.[選做題]在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程為
(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸,建立極坐標(biāo)系,點(diǎn)P的極坐標(biāo)為x=1+2ty=1+t,曲線C2的極坐標(biāo)方程為ρ=(2,π4).21+sin2θ
(1)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(2)若曲線C1,C2交于A,B兩點(diǎn),求||PA|-|PB||的值.組卷:24引用:1難度:0.6
[選做題]
-
23.已知函數(shù)f(x)=|x+1|+2|x-1|,g(x)=x+
+a(a∈R).2x
(1)求不等式f(x)≥6的解集;
(2)若對(duì)任意x1∈R,都存在x2∈[2,4],使得f(x1)≥g(x2)成立,求a的取值范圍.組卷:26引用:3難度:0.6