試卷征集
加入會員
操作視頻
當前位置: 試卷中心 > 試卷詳情

2022-2023學年廣東省清遠市高二(上)期末數(shù)學試卷

發(fā)布:2024/11/1 6:0:2

一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.

  • 1.已知數(shù)列1,-
    2
    3
    ,-2,
    5
    ,…,則該數(shù)列的第200項為( ?。?/h2>

    組卷:160引用:2難度:0.8
  • 2.已知等軸雙曲線C的焦距為12,則C的實軸長為( ?。?/h2>

    組卷:76引用:1難度:0.8
  • 3.已知橢圓C:
    x
    2
    m
    +
    y
    2
    m
    +
    6
    =1的離心率為
    3
    2
    ,則C的長軸長為( ?。?/h2>

    組卷:741引用:8難度:0.7
  • 4.已知數(shù)列{an}滿足an=sin(
    2
    +
    π
    4
    ),其前n項和為Sn,則S2022=( ?。?/h2>

    組卷:86引用:1難度:0.7
  • 5.在三棱錐P-ABC中,M是平面ABC上一點,且5
    PM
    =t
    PA
    +2
    PB
    +3
    MC
    ,則t=( ?。?/h2>

    組卷:448引用:5難度:0.6
  • 6.已知等比數(shù)列{an}的前n項和為Sn,若
    S
    3
    S
    6
    =
    1
    7
    ,則
    S
    9
    S
    6
    =( ?。?/h2>

    組卷:448引用:4難度:0.7
  • 7.若過點P(2,4)且斜率為k的直線l與曲線y=
    4
    -
    x
    2
    有且只有一個交點,則實數(shù)k的值不可能是( ?。?/h2>

    組卷:141引用:5難度:0.6

四、解答題:本題共6小題,共70分.解答應寫出文字說明、證明過程或演算步驟.

  • 21.在△ABC中,a,b,c分別是角A,B,C所對的邊,csin
    B
    +
    C
    2
    =sinC,且a=1.
    (1)求A;
    (2)若AB=AC,D,E兩點分別在邊BC,AB上,且CD=DE,求CD的最小值.

    組卷:144引用:3難度:0.6
  • 22.法國數(shù)學家加斯帕爾?蒙日創(chuàng)立的《畫法幾何學》對世界各國科學技術的發(fā)展影響深遠.在雙曲線
    x
    2
    a
    2
    -
    y
    2
    b
    2
    =1(a>b>0)中,任意兩條互相垂直的切線的交點都在同一個圓上,它的圓心是雙曲線的中心,半徑等于實半軸長與虛半軸長的平方差的算術平方根,這個圓被稱為蒙日圓.已知雙曲線C:
    x
    2
    a
    2
    -
    y
    2
    b
    2
    =1(a>b>0)的實軸長為6,其蒙日圓方程為x2+y2=1.
    (1)求雙曲線C的標準方程;
    (2)設D為雙曲線C的左頂點,直線l與雙曲線C交于不同于D的E,F(xiàn)兩點,若以EF為直徑的圓經(jīng)過點D,且DG⊥EF于G,證明:存在定點H,使|GH|為定值.

    組卷:162引用:6難度:0.4
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內改正