2022-2023學年廣東省清遠市高二(上)期末數(shù)學試卷
發(fā)布:2024/11/1 6:0:2
一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.
-
1.已知數(shù)列1,-
,2,-2,3,…,則該數(shù)列的第200項為( ?。?/h2>5組卷:160引用:2難度:0.8 -
2.已知等軸雙曲線C的焦距為12,則C的實軸長為( ?。?/h2>
組卷:76引用:1難度:0.8 -
3.已知橢圓C:
+x2m=1的離心率為y2m+6,則C的長軸長為( ?。?/h2>32組卷:741引用:8難度:0.7 -
4.已知數(shù)列{an}滿足an=sin(
+nπ2),其前n項和為Sn,則S2022=( ?。?/h2>π4組卷:86引用:1難度:0.7 -
5.在三棱錐P-ABC中,M是平面ABC上一點,且5
=tPM+2PA+3PB,則t=( ?。?/h2>MC組卷:448引用:5難度:0.6 -
6.已知等比數(shù)列{an}的前n項和為Sn,若
=S3S6,則17=( ?。?/h2>S9S6組卷:448引用:4難度:0.7 -
7.若過點P(2,4)且斜率為k的直線l與曲線y=
有且只有一個交點,則實數(shù)k的值不可能是( ?。?/h2>4-x2組卷:141引用:5難度:0.6
四、解答題:本題共6小題,共70分.解答應寫出文字說明、證明過程或演算步驟.
-
21.在△ABC中,a,b,c分別是角A,B,C所對的邊,csin
=sinC,且a=1.B+C2
(1)求A;
(2)若AB=AC,D,E兩點分別在邊BC,AB上,且CD=DE,求CD的最小值.組卷:144引用:3難度:0.6 -
22.法國數(shù)學家加斯帕爾?蒙日創(chuàng)立的《畫法幾何學》對世界各國科學技術的發(fā)展影響深遠.在雙曲線
-x2a2=1(a>b>0)中,任意兩條互相垂直的切線的交點都在同一個圓上,它的圓心是雙曲線的中心,半徑等于實半軸長與虛半軸長的平方差的算術平方根,這個圓被稱為蒙日圓.已知雙曲線C:y2b2-x2a2=1(a>b>0)的實軸長為6,其蒙日圓方程為x2+y2=1.y2b2
(1)求雙曲線C的標準方程;
(2)設D為雙曲線C的左頂點,直線l與雙曲線C交于不同于D的E,F(xiàn)兩點,若以EF為直徑的圓經(jīng)過點D,且DG⊥EF于G,證明:存在定點H,使|GH|為定值.組卷:162引用:6難度:0.4