2014-2015學(xué)年福建省北師大泉州附中高三(上)第一周周考數(shù)學(xué)試卷(理科)
發(fā)布:2024/4/20 14:35:0
一、選擇題(共10小題,每小題3分,滿分30分)
-
1.已知i為虛數(shù)單位,集合P={1,-1},Q={i,i2}.若P∩Q={zi},則復(fù)數(shù)z等于( ?。?/h2>
組卷:35引用:4難度:0.9 -
2.已知x,y∈R,若p:x<1,q:x+y≥2,則p是¬q的( ?。?/h2>
組卷:58引用:1難度:0.9 -
3.已知圓O:x2+y2=1及以下3個(gè)函數(shù):①f(x)=x3;②f(x)=tanx;③f(x)=xsinx其中圖象能等分圓C面積的函數(shù)有( ?。?/h2>
組卷:203引用:7難度:0.9 -
4.函數(shù)y=
的圖象大致形狀是( ?。?/h2>2x?|x|x組卷:802引用:5難度:0.7 -
5.定義在R上的奇函數(shù)f(x)滿足f(x+4)=f(x),且在[0,1]上單調(diào)遞增,下列關(guān)系式正確的是( ?。?/h2>
組卷:43引用:2難度:0.9 -
6.若函數(shù)f(x)=x2+x-a,則使得“函數(shù)y=f(x)在區(qū)間(-1,1)內(nèi)有零點(diǎn)”成立的一個(gè)必要非充分條件是( )
組卷:114引用:5難度:0.5 -
7.已知f(x)是定義在R上的奇函數(shù),且當(dāng)x<0時(shí),f(x)=3x,則f(log32)的值為( ?。?/h2>
組卷:83引用:9難度:0.7
選修4-4:坐標(biāo)系與參數(shù)方程)(本小題滿分7分)
-
21.在平面直角坐標(biāo)系xOy中,A(1,0),B(2,0)是兩個(gè)定點(diǎn),曲線C的參數(shù)方程為
(θ為參數(shù)).x=2+cosθy=sinθ
(Ⅰ)將曲線C的參數(shù)方程化為普通方程;
(Ⅱ)以A(1,0)為極點(diǎn),||為長(zhǎng)度單位,射線AB為極軸建立極坐標(biāo)系,求曲線C的極坐標(biāo)方程.AB組卷:22引用:1難度:0.5
選修4-5:不等式選講(本小題滿分7分)
-
22.(Ⅰ)試證明柯西不等式:(a2+b2)(x2+y2)≥(ax+by)2(x,y,a,b∈R);
(Ⅱ)已知x2+y2=2,且|x|≠|(zhì)y|,求+1(x+y)2的最小值.1(x-y)2組卷:132引用:1難度:0.5