滬教新版八年級(下)中考題單元試卷:第23章 概率初步(19)
發(fā)布:2024/11/26 5:30:2
一、選擇題(共3小題)
-
1.已知甲袋有5張分別標(biāo)示1~5的號碼牌,乙袋有6張分別標(biāo)示6~11的號碼牌,慧婷分別從甲、乙兩袋中各抽出一張?zhí)柎a牌.若同一袋中每張?zhí)柎a牌被抽出的機會相等,則她抽出兩張?zhí)柎a牌,其數(shù)字乘積為3的倍數(shù)的幾率為何?( ?。?/h2>
組卷:109引用:59難度:0.9 -
2.同時拋擲A、B兩個均勻的小立方體(每個面上分別標(biāo)有數(shù)字1,2,3,4,5,6),設(shè)兩立方體朝上的數(shù)字分別為x、y,并以此確定點P(x,y),那么點P落在拋物線y=-x2+3x上的概率為( ?。?/h2>
組卷:316引用:70難度:0.7 -
3.一個不透明的袋子里裝著質(zhì)地、大小都相同的3個紅球和2個綠球,隨機從中摸出一球,不再放回袋中,充分?jǐn)噭蚝笤匐S機摸出一球.兩次都摸到紅球的概率是( ?。?/h2>
組卷:582引用:80難度:0.7
二、填空題(共3小題)
-
4.合作小組的4位同學(xué)坐在課桌旁討論問題,學(xué)生A的座位如圖所示,學(xué)生B,C,D隨機坐到其他三個座位上,則學(xué)生B坐在2號座位的概率是
組卷:475引用:83難度:0.7 -
5.在1,2,3,4四個數(shù)字中隨機選兩個不同的數(shù)字組成兩位數(shù),則組成的兩位數(shù)大于40的概率是
組卷:226引用:62難度:0.5 -
6.從-3、1、-2這三個數(shù)中任取兩個不同的數(shù),積為正數(shù)的概率是.
組卷:155引用:63難度:0.7
三、解答題(共24小題)
-
7.一個不透明的口袋中裝有4張卡片,卡片上分別標(biāo)有數(shù)字1、-2、-3、4,它們除了標(biāo)有的數(shù)字不同之外再也沒有其它區(qū)別,小芳從盒子中隨機抽取一張卡片.
(1)求小芳抽到負(fù)數(shù)的概率;
(2)若小明再從剩余的三張卡片中隨機抽取一張,請你用樹狀圖或列表法,求小明和小芳兩人均抽到負(fù)數(shù)的概率.組卷:146引用:69難度:0.7 -
8.(1)我市開展了“尋找雷鋒足跡”的活動,某中學(xué)為了了解七年級800名學(xué)生在“學(xué)雷鋒活動月”中做好事的情況,隨機調(diào)查了七年級50名學(xué)生在一個月內(nèi)做好事的次數(shù),并將所得數(shù)據(jù)繪制成統(tǒng)計圖,請根據(jù)圖中提供的信息解答下列問題:
①所調(diào)查的七年級50名學(xué)生在這個月內(nèi)做好事次數(shù)的平均數(shù)是
②根據(jù)樣本數(shù)據(jù),估計該校七年級800名學(xué)生在“學(xué)雷鋒活動月”中做好事不少于4次的人數(shù).
(2)甲口袋有2個相同的小球,它們分別寫有數(shù)字1和2;乙口袋中裝有3個相同的小球,它們分別寫有數(shù)字3、4和5,從這兩個口袋中各隨機地取出1個小球.
①用“樹狀圖法”或“列表法”表示所有可能出現(xiàn)的結(jié)果;
②取出的兩個小球上所寫數(shù)字之和是偶數(shù)的概率是多少?組卷:196引用:63難度:0.5 -
9.小明與甲、乙兩人一起玩“手心手背”的游戲.他們約定:如果三人中僅有一人出“手心”或“手背”,則這個人獲勝;如果三人都出“手心”或“手背”,則不分勝負(fù),那么在一個回合中,如果小明出“手心”,則他獲勝的概率是多少?(請用“畫樹狀圖”或“列表”等方法寫出分析過程)
組卷:224引用:65難度:0.7 -
10.端午節(jié)吃粽子是中華民族的傳統(tǒng)習(xí)俗,據(jù)了解,甲廠家生產(chǎn)了A,B,C三個品種的盒裝粽子,乙廠家生產(chǎn)D,E兩個品種的盒裝粽子,端午節(jié)前,某商場在甲乙兩個廠家中各選購一個品種的盒裝粽子銷售.
(1)試用樹狀圖或列表法寫出所有選購方案;
(2)如果(1)中各種選購方案被選中的可能性相同,那么甲廠家的B品種粽子被選中的概率是多少?組卷:136引用:61難度:0.7
三、解答題(共24小題)
-
29.在不透明的袋子中有四張標(biāo)著數(shù)字1,2,3,4的卡片,小明、小華兩人按照各自的規(guī)則玩抽卡片游戲.
小明畫出樹狀圖如圖所示:
小華列出表格如下:第一次
第二次1 2 3 4 1 (1,1) (2,1) (3,1) (4,1) 2 (1,2) (2,2) ① (4,2) 3 (1,3) (2,3) (3,3) (4,3) 4 (1,4) (2,4) (3,4) (4,4)
(1)根據(jù)小明畫出的樹形圖分析,他的游戲規(guī)則是,隨機抽出一張卡片后(填“放回”或“不放回”),再隨機抽出一張卡片;
(2)根據(jù)小華的游戲規(guī)則,表格中①表示的有序數(shù)對為;
(3)規(guī)定兩次抽到的數(shù)字之和為奇數(shù)的獲勝,你認(rèn)為誰獲勝的可能性大?為什么?組卷:343引用:63難度:0.5 -
30.一不透明的布袋里,裝有紅、黃、藍三種顏色的小球(除顏色外其余都相同),其中有紅球2個,藍球1個,黃球若干個,現(xiàn)從中任意摸出一個球是紅球的概率為
.12
(1)求口袋中黃球的個數(shù);
(2)甲同學(xué)先隨機摸出一個小球(不放回),再隨機摸出一個小球,請用“樹狀圖法”或“列表法”,求兩次摸出都是紅球的概率;
(3)現(xiàn)規(guī)定:摸到紅球得5分,摸到黃球得3分,摸到藍球得2分(每次摸后放回),乙同學(xué)在一次摸球游戲中,第一次隨機摸到一個紅球第二次又隨機摸到一個藍球,若隨機再摸一次,求乙同學(xué)三次摸球所得分?jǐn)?shù)之和不低于10分的概率.組卷:354引用:69難度:0.3