2021-2022學年黑龍江省齊齊哈爾實驗中學高一(下)開學數(shù)學試卷
發(fā)布:2024/11/16 1:30:1
一、單項選擇題:本題共8小題,每小題5分,共40分。在每小題給出的四個選項中,只有一項符合題目要求。
-
1.已知集合M={x|y=ln(x+1)},N={y|y=ex},則M∩N=( ?。?/h2>
組卷:189引用:7難度:0.9 -
2.已知函數(shù)y=ax+3+3(a>0,且a≠1)的圖象恒過點P,若角α的終邊經(jīng)過點P,則cosα=( ?。?/h2>
組卷:243引用:7難度:0.7 -
3.已知點P(cosα+sinα,sinα-cosα)在第三象限,則α的取值范圍是( ?。?/h2>
組卷:135引用:2難度:0.7 -
4.某地計劃將一處廢棄的水庫改造成水上公園,并繞水庫修建一條游覽道路.平面示意圖如圖所示,道路OC長度為8(單位:百米),OA是函數(shù)y=loga(x+b)圖象的一部分,ABC是函數(shù)y=Msin(ωx+φ)(M>0,ω>0,|φ|<
,x∈[4,8])的圖象,最高點為B(5,π2),則道路OABC所對應(yīng)函數(shù)的解析式為( )433組卷:27引用:1難度:0.5 -
5.基本再生數(shù)R0與世代間隔T是流行病學基本參數(shù),基本再生數(shù)是指一個感染者傳染的平均人數(shù),世代間隔指兩代間傳染所需的平均時間,在α型病毒疫情初始階段,可以用指數(shù)模型I(t)=ert描述累計感染病例數(shù)Ⅰ(t)隨時間t(單位:天)的變化規(guī)律,指數(shù)增長率r與R0、T近似滿足R0=1+rT,有學者基于已有數(shù)據(jù)估計出R0=3.22,T=10.據(jù)此,在α型病毒疫情初始階段,累計感染病例數(shù)增加至Ⅰ(0)的3倍需要的時間約為( ?。▍⒖紨?shù)據(jù):ln3≈1.10)
組卷:10引用:1難度:0.7 -
6.若函數(shù)f(x)=
,滿足f(a)=f(b)=f(c)=f(d)=f(e)且a,b,c,d,e互不相等,則a+b+c+d+e的取值范圍是( ?。?/h2>-|x+1|+1,x≤0sin(π-πx),0<x<13x-3,x≥1組卷:107引用:3難度:0.5 -
7.已知函數(shù)
,函數(shù)g(x)=(m-1)x(1≤x≤2).若任意的x1∈[0,1],存在x2∈[1,2],使得f(x1)=g(x2),則實數(shù)m的取值范圍為( )f(x)=2x+m2x+1(0≤x≤1)組卷:268引用:4難度:0.5
四、解答題,本題共6個小題,共70分,解答應(yīng)寫出文字說明,證明過程或演算步驟。
-
21.給出下面三個條件:
①函數(shù)y=f(x)的圖象與直線y=-1只有一個交點;
②函數(shù)f(x+l)是偶函數(shù);
③函數(shù)f(x)的兩個零點的差為2.
在這三個條件中選擇一個,將下面問題補充完整,使函數(shù)f(x)的解析式確定
問題:二次函數(shù)f(x)=ax2+bx+c滿足f(x+l)-f(x)=2x-1,且 (填所選條件的序號).
(1)求f(x)的解析式;
(2)若對任意x∈[,27],2f(log3x)+m≤0恒成立,求實數(shù)m的取值范圍;19
(3)若函數(shù)g(x)=(2t-1)f(3x)-2x3x-2有且僅有一個零點,求實數(shù)t的取值范圍.
注:如果選擇多個條件分別解答,按第一個解答計分.組卷:9引用:1難度:0.6 -
22.已知函數(shù)f(x)=x2-tx+2t-2,g(x)=2|x-1|,函數(shù)F(x)=min{f(x),g(x)},其中min
.{p,q}=p,p≤qq,p>q
(1)若f(x)≥2t-4恒成立,求實數(shù)t的取值范圍;
(2)若t≥6,
①求使得F(x)=f(x)成立的x的取值范圍;
②求F(x)在區(qū)間[0,6]上的最大值M(t).組卷:165引用:4難度:0.3