2023-2024學年上海市黃浦區(qū)敬業(yè)中學高三(上)月考數(shù)學試卷(10月份)
發(fā)布:2024/9/6 11:0:13
一、填空題(本大題共有12題,滿分54分,第1~6題每題4分,第7~12題每題5分)
-
1.已知集合M=[0,+∞),N=[a,+∞),若M?N,則實數(shù)a的取值范圍是 .
組卷:292引用:2難度:0.9 -
2.若扇形的圓心角為
,面積為π3,則扇形的半徑為 .2π3組卷:69引用:5難度:0.8 -
3.設(shè)復數(shù)z滿足(1+2i)z=5i,則|z|=.
組卷:65引用:4難度:0.7 -
4.若某圓錐高為3,其側(cè)面積與底面積之比為2:1,則該圓錐的體積為 .
組卷:170引用:7難度:0.6 -
5.已知(1-2x)n的二項展開式中第3項與第10項的二項式系數(shù)相等,則展開式中含x3的系數(shù)為 .
組卷:182引用:3難度:0.5 -
6.如圖所示的莖葉圖記錄了甲、乙兩組各5名工人某日的產(chǎn)量數(shù)據(jù)(單位:件),若這兩組數(shù)據(jù)的中位數(shù)相等,且平均值也相等,則x=,y=.
組卷:31引用:4難度:0.8 -
7.若關(guān)于x的不等式組
的解集是?,則實數(shù)a的取值范圍是 .x-1x-2≤0|x-a|≤2組卷:51引用:2難度:0.7
三、解答題(本大題共有5題,滿分78分)
-
20.已知定義域為R的函數(shù)
是奇函數(shù).f(x)=-2x+a2x+1
(1)求實數(shù)a的值;
(2)判斷f(x)的單調(diào)性并用定義證明;
(3)已知不等式(m>0且m≠1)恒成立,求實數(shù)m的取值范圍.f(logm34)+f(-1)>0組卷:52引用:2難度:0.5 -
21.已知A,B分別是橢圓C:
+x2a2=1(a>b>0)的左、右頂點,O為坐標原點,|AB|=6,點(2,y2b2)在橢圓C上,過點P(0,-3)的直線l交橢圓C于M,N兩個不同的點.53
(1)求橢圓C的標準方程;
(2)若點B落在以線段MN為直徑為圓的外部,求直線l的傾斜角θ的取值范圍;
(3)當直線l的傾斜角θ為銳角時,設(shè)直線AM,AN分別交y軸于點S,T,記=PS,λPO=PT,求λ+μ的取值范圍.μPO組卷:226引用:7難度:0.6