2022-2023學(xué)年江西省上饒市廣豐區(qū)重點(diǎn)高中高二(上)期中數(shù)學(xué)試卷
發(fā)布:2024/11/5 15:0:2
一、單選題
-
1.已知A(3,3,3),B(6,6,6),O為原點(diǎn),則
與OA的夾角是( )BO組卷:95引用:3難度:0.7 -
2.若拋物線y2=2px(p>0)的焦點(diǎn)到直線y=x+1的距離為
,則p=( ?。?/h2>2組卷:4535引用:17難度:0.7 -
3.已知正方體ABCD-A1B1C1D1的棱長為a,則平面AB1D1與平面BC1D的距離為( )
組卷:74引用:6難度:0.7 -
4.設(shè)B是橢圓C:
+x2a2=1(a>b>0)的上頂點(diǎn),若C上的任意一點(diǎn)P都滿足|PB|≤2b,則C的離心率的取值范圍是( ?。?/h2>y2b2組卷:5530引用:18難度:0.6 -
5.已知四面體ABCD,所有棱長均為2,點(diǎn)E,F(xiàn)分別為棱AB,CD的中點(diǎn),則
=( ?。?/h2>AF?CE組卷:1089引用:8難度:0.6 -
6.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,PB與底面ABCD所成的角為
,底面ABCD為直角梯形,π4,點(diǎn)E為棱PD上一點(diǎn),滿足∠ABC=∠BAD=π2,AD=2,PA=BC=1,下列結(jié)論錯(cuò)誤的是( ?。?/h2>PE=λPD(0≤λ≤1)組卷:315引用:3難度:0.5 -
7.如圖,O是坐標(biāo)原點(diǎn),P是雙曲線
右支上的一點(diǎn),F(xiàn)是E的右焦點(diǎn),延長PO,PF分別交E于Q,R兩點(diǎn),已知QF⊥FR,且|QF|=2|FR|,則E的離心率為( ?。?/h2>E:x2a2-y2b2=1(a>0,b>0)組卷:633引用:11難度:0.5
四、解答題
-
21.在①離心率
,②橢圓C過點(diǎn)e=12,③△PF1F2面積的最大值為(1,32),這三個(gè)條件中任選一個(gè),補(bǔ)充在下面(橫線處)問題中,解決下面兩個(gè)問題.3
設(shè)橢圓的左、右焦點(diǎn)分別為F1、F,過F1且斜率為k的直線l交橢圓于P、Q兩點(diǎn),已知橢圓C的短軸長為C:x2a2+y2b2=1(a>b>0),_____.23
(1)求橢圓C的方程;
(2)若線段PQ的中垂線與x軸交于點(diǎn)N,求證:為定值.|PQ||NF1|組卷:242引用:8難度:0.5 -
22.已知?jiǎng)狱c(diǎn)Q到直線x=-2的距離比到定點(diǎn)(1,0)的距離大1.
(Ⅰ)寫出動(dòng)點(diǎn)Q的軌跡C的方程;
(Ⅱ)設(shè)x=my+1為過(1,0)作曲線C的任一條弦AB所在直線方程,弦AB的中點(diǎn)為D,過D點(diǎn)作直線DP與直線x=-1交于點(diǎn)P,與x軸交于點(diǎn)M,且使得|PA|=|PB|,|PD|=|AB|,求∠PMF的正弦值(其中F為定點(diǎn)(1,0)).組卷:30引用:2難度:0.5