2023-2024學(xué)年福建省福州三中高二(上)期中數(shù)學(xué)試卷
發(fā)布:2024/10/21 18:0:2
一、選擇題:本大題共8個(gè)小題,每小題5分,共40分.
-
1.已知空間向量
,a,且b,AB=3a+6b,BC=-10a+12b,則一定共線的三點(diǎn)是( ?。?/h2>CD=14a-4b組卷:64引用:2難度:0.8 -
2.如圖,在三棱柱ABC-A1B1C1中,E、F分別是BC、CC1的中點(diǎn),G為△ABC的重心,則
=( )GF組卷:658引用:11難度:0.8 -
3.當(dāng)圓C:x2+y2+6y-3=0的圓心到直線l:mx+y+m-1=0的距離最大時(shí),m=( ?。?/h2>
組卷:97引用:3難度:0.8 -
4.已知橢圓C:
的左頂點(diǎn)為A,上頂點(diǎn)為B,右焦點(diǎn)為F,若∠ABF=90°,則橢圓C的離心率為( )x2a2+y2b2=1(a>b>0)組卷:1417引用:16難度:0.7 -
5.如圖,一次函數(shù)y=x+3的圖象與x軸,y軸分別交于點(diǎn)A,B,點(diǎn)C(-2,0)是x軸上一點(diǎn),點(diǎn)E,F(xiàn)分別為直線y=x+3和y軸上的兩個(gè)動(dòng)點(diǎn),當(dāng)△CEF周長(zhǎng)最小時(shí),點(diǎn)E,F(xiàn)的坐標(biāo)分別為( ?。?/h2>
組卷:22引用:2難度:0.6 -
6.若直線l:kx-y+3k=0與曲線
有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)k的取值范圍是( ?。?/h2>C:1-x2=y-1組卷:1602引用:18難度:0.5 -
7.已知過(guò)橢圓
左焦點(diǎn)F且與長(zhǎng)軸垂直的弦長(zhǎng)為C:x2a2+y2b2=1(a>b>0),過(guò)點(diǎn)P(2,1)且斜率為-1的直線與C相交于A,B兩點(diǎn),若P恰好是AB的中點(diǎn),則橢圓C上一點(diǎn)M到F的距離的最大值為( ?。?/h2>62組卷:209引用:8難度:0.5
四、解答題:本大題共6小題,共70分.
-
21.如圖,四棱錐P-ABCD的底面為正方形,PD⊥底面ABCD.設(shè)平面PAD與平面PBC的交線為l.
(1)證明:l⊥平面PDC;
(2)已知PD=AD=1,Q為l上的點(diǎn),求PB與平面QCD所成角的正弦值的最大值.組卷:7598引用:21難度:0.5 -
22.已知橢圓
過(guò)點(diǎn)A(-2,-1),離心率C:x2a2+y2b2=1(a>b>0).e=32
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)過(guò)點(diǎn)A的斜率為k直線l交橢圓C于另一點(diǎn)B,若△OAB的面積為2,其中O為坐標(biāo)原點(diǎn),求直線l的斜率k的值;
(3)設(shè)過(guò)點(diǎn)D(-4,0)的直線l′交橢圓C于點(diǎn)M,N,直線MA,NA分別交直線x=-4于點(diǎn)P,Q.求證:線段PQ的中點(diǎn)T為定點(diǎn).組卷:85引用:2難度:0.5