2022-2023學(xué)年湖南省懷化市高二(上)期中數(shù)學(xué)試卷
發(fā)布:2024/11/27 20:30:2
一、單項(xiàng)選擇題:本大題共8小題,每小題5分,滿分40分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.
-
1.以下四個(gè)命題中,真命題為( ?。?/h2>
A.側(cè)面都是等腰三角形的棱錐是正棱錐 B.底面是矩形的四棱柱是長(zhǎng)方體 C.正三棱錐是正四面體 D.棱臺(tái)的側(cè)棱延長(zhǎng)后必交于一點(diǎn) 組卷:16引用:1難度:0.7 -
2.如圖,在平行六面體ABCD-A1B1C1D1中,
=( ?。?/h2>AB+AD-CC1A. AC1B. A1CC. D1BD. DB1組卷:410引用:24難度:0.7 -
3.已知向量
,向量a=(23,0,2),則向量b=(12,0,32)在向量a上的投影向量為( ?。?/h2>bA. (3,0,3)B. (-3,0,1)C. (1,0,3)D. (14,0,34)組卷:281引用:13難度:0.9 -
4.已知橢圓C:
+x2a2=1的一個(gè)焦點(diǎn)為(2,0),則C的離心率為( ?。?/h2>y24A. 13B. 12C. 22D. 223組卷:8666引用:38難度:0.9 -
5.北京大興國(guó)際機(jī)場(chǎng)的顯著特點(diǎn)之一是各種彎曲空間的運(yùn)用.刻畫空間的彎曲性是幾何研究的重要內(nèi)容.用曲率刻畫空間彎曲性,規(guī)定:多面體頂點(diǎn)的曲率等于2π與多面體在該點(diǎn)的面角之和的差(多面體的面的內(nèi)角叫做多面體的面角,角度用弧度制),多面體面上非頂點(diǎn)的曲率均為零,多面體的總曲率等于該多面體各頂點(diǎn)的曲率之和,例如:正四面體在每個(gè)頂點(diǎn)有3個(gè)面角,每個(gè)面角是
,所以正四面體在各頂點(diǎn)的曲率為2π-3×π3=π,故其總曲率為4π,則四棱錐的總曲率為( )π3A.2π B.4π C.5π D.6π 組卷:118引用:5難度:0.7 -
6.用一個(gè)圓心角為120°,面積為3π的扇形OMN(O為圓心)圍成一個(gè)圓錐(點(diǎn)M,N恰好重合),該圓錐頂點(diǎn)為P,底面圓的直徑為AB,則tan∠APB的值為( )
A. 427B. 223C. 325D. 425組卷:79引用:1難度:0.7 -
7.直線y=x和y=-x上各有一點(diǎn)P,Q(其中點(diǎn)P,Q的縱坐標(biāo)分別為yP,yP且滿足yPyQ<0),△OPQ的面積為4,則PQ的中點(diǎn)M的軌跡方程為( ?。?/h2>
A.x2+y2=4 B.x2-y2=4 C.x2-x2=4 D.x2+y2=8 組卷:26引用:1難度:0.7
四、解答題:共70分,解答應(yīng)寫出文字說明、證明過程和演算步驟
-
21.如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,PA=AD=2,BD=4,AB=2
,BD是∠ADC的平分線,且BD⊥BC.3
(1)若點(diǎn)E為棱PC的中點(diǎn),證明:BE∥平面PAD;
(2)已知二面角P-AB-D的大小為60°,求平面PBD和平面PCD的夾角的余弦值.組卷:453引用:9難度:0.6 -
22.某學(xué)校在平面圖為矩形的操場(chǎng)ABCD內(nèi)進(jìn)行體操表演,其中AB=40,BC=15,O為AB上一點(diǎn),且BO=10,線段OC、OD、MN為表演隊(duì)列所在位置(M、N分別在線段OD、OC上),△OCD內(nèi)的點(diǎn)P為領(lǐng)隊(duì)位置,且P到OC、OD的距離分別為
、13,記OM=d,我們知道當(dāng)△OMN面積最小時(shí)觀賞效果最好.5
(1)當(dāng)d為何值時(shí),P為隊(duì)列MN的中點(diǎn);
(2)怎樣安排M的位置才能使觀賞效果最好?求出此時(shí)△OMN的面積.組卷:177引用:3難度:0.7