2022年天津市濱海新區(qū)塘沽一中高考數(shù)學(xué)適應(yīng)性試卷
發(fā)布:2024/4/20 14:35:0
一、選擇題:在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.
-
1.已知全集U={1,2,3,4,5,6},集合A={1,2,3},B={2,5,6},則A∩(?UB)=( )
組卷:495引用:5難度:0.9 -
2.設(shè)x∈R,則“|x|>1”是“x(x-1)>0”的( ?。?/h2>
組卷:405引用:2難度:0.7 -
3.函數(shù)y=
的圖象大致為( ?。?/h2>sinx+4xe|x|組卷:454引用:14難度:0.7 -
4.某市為了解全市環(huán)境治理情況,對(duì)本市的200家中小型企業(yè)的污染情況進(jìn)行了摸排,并把污染情況各類指標(biāo)的得分綜合折算成標(biāo)準(zhǔn)分100分,統(tǒng)計(jì)并制成如圖所示的直方圖,則標(biāo)準(zhǔn)分不低于70分的企業(yè)數(shù)為( ?。?/h2>
組卷:263引用:6難度:0.7 -
5.已知a=20.1,b=2ln
,c=ln2,則a,b,c的大小關(guān)系為( ?。?/h2>12組卷:374引用:3難度:0.9 -
6.已知正三棱錐S-ABC的三條側(cè)棱兩兩垂直,且側(cè)棱長為1,則此三棱錐的外接球的表面積為( ?。?/h2>
組卷:945引用:2難度:0.6
三.解答題(共5小題)
-
19.已知數(shù)列{an}是等比數(shù)列,公比大于0,其前n項(xiàng)和為Sn,a1=1,a3=a2+2,數(shù)列{bn}滿足
n∑i=1=bn+1-1,且b1=1.bii
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)求;n∑k=1a2kcoskπ
(Ⅲ)設(shè)cn=,數(shù)列{Cn}的前n項(xiàng)和為Tn,求證:Tn<2bn3bn-1.94組卷:458引用:2難度:0.5 -
20.設(shè)函數(shù)p(x)=lnx+x-4,q(x)=axex(a∈R),
.h(x)=q(x)axe2x(a∈R)
(Ⅰ)求函數(shù)f(x)=p(x)-2x的單調(diào)區(qū)間和極值;
(Ⅱ)若關(guān)于x的不等式|p(x)|>q(x)的解集中有且只有兩個(gè)整數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅲ)方程p(x)-x+4=h(x)在的實(shí)根為x0,令,若存在x1,x2∈(1,+∞),x1<x2,使得F(x1)=F(x2),證明F(x2)<F(2x0-x1).F(x)=x[p(x)-x+4],1<x≤x0xh(x),x>x0組卷:127引用:1難度:0.3