試卷征集
加入會員
操作視頻
當前位置: 試卷中心 > 試卷詳情

2023-2024學年重慶市萬州第二高級中學高二(上)期中數(shù)學試卷

發(fā)布:2024/9/30 6:0:3

一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的4個選項中,只有一項是符合題目要求的.

  • 1.直線y=tan45°的斜率為( ?。?/h2>

    組卷:31引用:2難度:0.8
  • 2.若向量
    a
    =(2,0,-1),向量
    b
    =(0,1,-2),則2
    a
    -
    b
    =( ?。?/h2>

    組卷:1852引用:21難度:0.9
  • 3.平面內(nèi)點P到F1(-3,0)、F2(3,0)的距離之和是10,則動點P的軌跡方程是( ?。?/h2>

    組卷:81引用:18難度:0.7
  • 4.點A(6,0),P在直線y=-x上,
    |
    AP
    |
    =
    3
    2
    ,則P點的個數(shù)是( ?。?/h2>

    組卷:39引用:3難度:0.8
  • 5.已知
    v
    為直線l的方向向量,
    n
    1
    n
    2
    分別為平面α,β的法向量(α,β不重合)那么下列說法中:
    n
    1
    n
    2
    ?α∥β;②
    n
    1
    n
    2
    ?α⊥β;③
    v
    n
    1
    ?l∥α;④
    v
    n
    1
    ?l⊥α.正確的有( ?。?/h2>

    組卷:188引用:10難度:0.8
  • 6.直線l:mx-y+1-2m=0與圓C:(x-2)2+(y-4)2=10相交所形成的長度為整數(shù)的弦的條數(shù)為( ?。?/h2>

    組卷:42引用:1難度:0.6
  • 7.若直線l:kx-y+3k=0與曲線
    C
    1
    -
    x
    2
    =
    y
    -
    1
    有兩個不同的交點,則實數(shù)k的取值范圍是( ?。?/h2>

    組卷:1602引用:18難度:0.5

四、解答題:本大題共6小題,共70分.解答應寫出必要的文字說明、證明過程或演算步驟.

  • 菁優(yōu)網(wǎng)21.如圖甲,在四邊形PBCD中,PD∥BC,PB=BC=CD=AD=PA=2,將△ABP沿AB折起得圖乙,點M是PD上的點.
    (1)若M為PD的中點,證明:PC⊥平面ABM;
    (2)若PC=
    6
    ,試確定M的位置,使二面角M-AB-C的正弦值等于
    2
    5
    5

    組卷:182引用:3難度:0.5
  • 22.已知橢圓K:
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =
    1
    (a>b>0)的左、右焦點分別為F1(-2,0),F(xiàn)2(2,0),過右焦點F2的直線l交橢圓K于M,N兩點,以線段|MF2|為直徑的圓C與圓C1:x2+y2=8內(nèi)切.
    (1)求橢圓K的方程;
    (2)過點M作ME⊥x軸于點E,過點N作NQ⊥x軸于點Q,OM與NE交于點P,是否存在直線l截得△PMN的面積等于
    6
    2
    ?若存在,求出直線l的方程;若不存在,請說明理由.

    組卷:182引用:2難度:0.5
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正