試卷征集
加入會員
操作視頻
當前位置: 試卷中心 > 試卷詳情

2022年湖北省黃岡中學(xué)高考數(shù)學(xué)二模試卷

發(fā)布:2024/4/20 14:35:0

一、單項選擇題:本大題共8小題,每小題5分,共40分,在每小題給出的四個選項中,只有一項是符合題目要求的.

  • 1.已知復(fù)數(shù)z滿足(-3i)z=4-5i,則z的共軛復(fù)數(shù)的虛部為( ?。?/h2>

    組卷:149引用:5難度:0.8
  • 2.設(shè)集合A={x|(x-1)(x-4)<0},B={x|2x+a<0},且A∩B={x|1<x<2},則a=(  )

    組卷:98引用:2難度:0.8
  • 3.已知a=
    2
    -
    1
    3
    ,b=log2
    1
    3
    ,c=
    log
    1
    2
    1
    3
    ,則(  )

    組卷:7441引用:125難度:0.9
  • 4.已如A,B,C是表面積為16π的球O的球面上的三個點,且AC=AB=1,∠ABC=30°,則三棱錐O-ABC的體積為(  )

    組卷:380引用:7難度:0.6
  • 5.已知函數(shù)f(x)=xln(e2x+1)-x2+1,f(a)=2,則f(-a)的值為(  )

    組卷:1838引用:7難度:0.7
  • 6.
    sinα
    +
    cosα
    =
    1
    5
    ,0<α<π,則sin2α+cos2α=(  )

    組卷:908引用:4難度:0.5
  • 7.直線x=2與雙曲線
    x
    2
    4
    -y2=1的漸近線交于A,B兩點,設(shè)P為雙曲線上任一點,若
    OP
    =a
    OA
    +b
    OB
    (a,b∈R,O為坐標原點),則下列不等式恒成立的是( ?。?/h2>

    組卷:1139引用:6難度:0.5

四、解答題:本大題共6小題,共70分.解答應(yīng)寫出文字說明、證明過程或演算步驟。

  • 21.動點P到定點F(0,1)的距離之比它到直線y=-2的距離小1,設(shè)動點P的軌跡為曲線C,過點F的直線交曲線C于A,B兩個不同的點,過點A,B分別作曲線C的切線,且二者相交于點M.
    (1)求曲線C的方程;
    (2)求證:
    AB
    ?
    MF
    =
    0
    ;
    (3)求△ABM的面積的最小值.

    組卷:715引用:7難度:0.3
  • 22.已知函數(shù)
    f
    x
    =
    a
    x
    2
    e
    x
    +
    1
    2
    x
    2
    -
    2
    x
    a
    R
    (e=2.71828…是自然對數(shù)的底數(shù)).
    (1)若f(x)在x∈(0,2)內(nèi)有兩個極值點,求實數(shù)a的取值范圍;
    (2)a=1時,討論關(guān)于x的方程
    [
    f
    x
    -
    1
    2
    x
    2
    +
    2
    x
    ]
    1
    x
    e
    x
    +
    b
    =
    |
    lnx
    |
    b
    R
    的根的個數(shù).

    組卷:256引用:5難度:0.1
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正