2022-2023學(xué)年安徽省合肥一中高一(下)期中數(shù)學(xué)試卷
發(fā)布:2024/7/20 8:0:8
一、單項(xiàng)選擇題(共8小題,每題5分,滿分40分).
-
1.若復(fù)數(shù)z=a2-4+(a-2)i為純虛數(shù),則實(shí)數(shù)a的值為( )
組卷:198引用:9難度:0.7 -
2.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿足c=2acosB,則△ABC的形狀是( ?。?/h2>
組卷:1083引用:18難度:0.9 -
3.某圓錐的側(cè)面展開(kāi)圖是半徑為3,圓心角為120°的扇形,則該圓錐的體積為( ?。?/h2>
組卷:516引用:6難度:0.9 -
4.△ABC中,三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知
,則B的大小為( )A=π4,a=2,b=3組卷:94引用:4難度:0.7 -
5.設(shè)點(diǎn)P為△ABC內(nèi)一點(diǎn).且2
+2PA+PB=0,則S△ABP:S△ABC=( )PC組卷:1513引用:7難度:0.6 -
6.如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,已知AB=BC=2,AA1=5,E為B1C1的中點(diǎn),則異面直線BD與CE所成角的余弦值為( ?。?/h2>
組卷:441引用:7難度:0.7 -
7.在《九章算術(shù)》中,底面為矩形的棱臺(tái)被稱為“芻童”.已知棱臺(tái)ABCD-A′B′C′D′是一個(gè)側(cè)棱相等、高為1的“芻童”,其中AB=2A′B′=2,
,則該“芻童”外接球的表面積為( ?。?/h2>BC=2B′C′=23組卷:194引用:5難度:0.5
四、解答題(共6小題,其中第17題10分,其余各題12分,滿分70分)
-
21.合肥一中云上農(nóng)舍有三處苗圃,分別位于圖中△ABC的三個(gè)頂點(diǎn),已知
,BC=40m.為了解決三個(gè)苗圃的灌溉問(wèn)題,現(xiàn)要在△ABC區(qū)域內(nèi)(不包括邊界)且與B,C等距的一點(diǎn)O處建立一個(gè)蓄水池,并鋪設(shè)管道OA、OB、OC.AB=AC=202m
(1)設(shè)∠OBC=θ,記鋪設(shè)的管道總長(zhǎng)度為ym,請(qǐng)將y表示為θ的函數(shù);
(2)當(dāng)管道總長(zhǎng)取最小值時(shí),求θ的值.組卷:22引用:3難度:0.5 -
22.數(shù)學(xué)史上著名的波爾約-格維也納定理:任意兩個(gè)面積相等的多邊形,它們可以通過(guò)相互拼接得到.它由法卡斯?波爾約(FarksBolyai)和保羅?格維也納(PaulGerwien)兩位數(shù)學(xué)家分別在1833年和1835年給出證明.現(xiàn)在我們來(lái)嘗試用平面圖形拼接空間圖形,使它們的全面積都與原平面圖形的面積相等:(1)給出兩塊相同的正三角形紙片(如圖1、圖2),其中圖1,沿正三角形三邊中點(diǎn)連線折起,可拼得一個(gè)正三棱錐;圖2,正三角形三個(gè)角上剪出三個(gè)相同的四邊形(陰影部分),其較長(zhǎng)的一組鄰邊邊長(zhǎng)為三角形邊長(zhǎng)的
,有一組對(duì)角為直角,余下部分按虛線折起,可成一個(gè)缺上底的正三棱柱,而剪出的三個(gè)相同的四邊形恰好拼成這個(gè)正三棱錐的上底.14
(1)試比較圖1與圖2剪拼的正三棱錐與正三棱柱的體積的大??;
(2)如果給出的是一塊任意三角形的紙片(如圖3),要求剪拼成一個(gè)直三棱柱模型,使它的全面積與給出的三角形的面積相等.請(qǐng)仿照?qǐng)D2設(shè)計(jì)剪拼方案,用虛線標(biāo)示在圖3中,并作簡(jiǎn)要說(shuō)明.組卷:15引用:2難度:0.5