2020學(xué)年人教新版九年級上學(xué)期《第21章 一元二次方程》中考真題套卷(6)
發(fā)布:2024/12/1 18:0:2
一、選擇題(共10小題)
-
1.已知關(guān)于x的一元二次方程3x2+4x-5=0,下列說法正確的是( )
A.方程有兩個相等的實數(shù)根 B.方程有兩個不相等的實數(shù)根 C.沒有實數(shù)根 D.無法確定 組卷:6802引用:97難度:0.9 -
2.若2-
是方程x2-4x+c=0的一個根,則c的值是( )3A.1 B. 3-3C. 1+3D. 2+3組卷:4848引用:27難度:0.9 -
3.關(guān)于x的一元二次方程x2-4x+3=0的解為( ?。?/h2>
A.x1=-1,x2=3 B.x1=1,x2=-3 C.x1=1,x2=3 D.x1=-1,x2=-3 組卷:2540引用:32難度:0.9 -
4.如圖,有一張矩形紙片,長10cm,寬6cm,在它的四角各剪去一個同樣的小正方形,然后折疊成一個無蓋的長方體紙盒.若紙盒的底面(圖中陰影部分)面積是32cm2,求剪去的小正方形的邊長.設(shè)剪去的小正方形邊長是x cm,根據(jù)題意可列方程為( ?。?/h2>
A.10×6-4×6x=32 B.(10-2x)(6-2x)=32 C.(10-x)(6-x)=32 D.10×6-4x2=32 組卷:6937引用:58難度:0.9 -
5.關(guān)于x的一元二次方程x2-(k+3)x+k=0的根的情況是( )
A.有兩不相等實數(shù)根 B.有兩相等實數(shù)根 C.無實數(shù)根 D.不能確定 組卷:5676引用:38難度:0.9 -
6.若α,β是一元二次方程3x2+2x-9=0的兩根,則
+βα的值是( )αβA. 427B.- 427C.- 5827D. 5827組卷:6688引用:40難度:0.9 -
7.揚帆中學(xué)有一塊長30m,寬20m的矩形空地,計劃在這塊空地上劃出四分之一的區(qū)域種花,小禹同學(xué)設(shè)計方案如圖所示,求花帶的寬度.設(shè)花帶的寬度為x m,則可列方程為( ?。?/h2>
A.(30-x)(20-x)= ×20×3034B.(30-2x)(20-x)= ×20×3014C.30x+2×20x= ×20×3014D.(30-2x)(20-x)= ×20×3034組卷:4358引用:66難度:0.8 -
8.某?!把袑W(xué)”活動小組在一次野外實踐時,發(fā)現(xiàn)一種植物的主干長出若干數(shù)目的枝干,每個枝干又長出同樣數(shù)目的小分支,主干、枝干和小分支的總數(shù)是43,則這種植物每個枝干長出的小分支個數(shù)是( ?。?/h2>
A.4 B.5 C.6 D.7 組卷:4276引用:52難度:0.8 -
9.若α、β為方程2x2-5x-1=0的兩個實數(shù)根,則2α2+3αβ+5β的值為( ?。?/h2>
A.-13 B.12 C.14 D.15 組卷:5317引用:33難度:0.7 -
10.用配方法解一元二次方程x2-4x+1=0時,下列變形正確的是( ?。?/h2>
A.(x-2)2=1 B.(x-2)2=5 C.(x+2)2=3 D.(x-2)2=3 組卷:2263引用:56難度:0.6
三、解答題(共10小題)
-
29.已知關(guān)于x的一元二次方程x2-6x+(4m+1)=0有實數(shù)根.
(1)求m的取值范圍;
(2)若該方程的兩個實數(shù)根為x1、x2,且|x1-x2|=4,求m的值.組卷:3878引用:27難度:0.7 -
30.隨著粵港澳大灣區(qū)建設(shè)的加速推進(jìn),廣東省正加速布局以5G等為代表的戰(zhàn)略性新興產(chǎn)業(yè),據(jù)統(tǒng)計,目前廣東5G基站的數(shù)量約1.5萬座,計劃到2020年底,全省5G基站數(shù)是目前的4倍,到2022年底,全省5G基站數(shù)量將達(dá)到17.34萬座.
(1)計劃到2020年底,全省5G基站的數(shù)量是多少萬座?
(2)按照計劃,求2020年底到2022年底,全省5G基站數(shù)量的年平均增長率.組卷:4013引用:37難度:0.7