青島版九年級(下)中考題單元試卷:第5章 對函數(shù)的再探索(47)
發(fā)布:2024/4/20 14:35:0
一、填空題(共2小題)
-
1.在平面直角坐標(biāo)系xOy中,直線y=kx(k為常數(shù))與拋物線y=
x2-2交于A,B兩點(diǎn),且A點(diǎn)在y軸左側(cè),P點(diǎn)的坐標(biāo)為(0,-4),連接PA,PB.有以下說法:13
①PO2=PA?PB;
②當(dāng)k>0時(shí),(PA+AO)(PB-BO)的值隨k的增大而增大;
③當(dāng)k=時(shí),BP2=BO?BA;-33
④△PAB面積的最小值為.46
其中正確的是 .(寫出所有正確說法的序號)組卷:3785引用:56難度:0.1 -
2.二次函數(shù)y=
的圖象如圖,點(diǎn)A0位于坐標(biāo)原點(diǎn),點(diǎn)A1,A2,A3…An在y軸的正半軸上,點(diǎn)B1,B2,B3…Bn在二次函數(shù)位于第一象限的圖象上,點(diǎn)C1,C2,C3…Cn在二次函數(shù)位于第二象限的圖象上,四邊形A0B1A1C1,四邊形A1B2A2C2,四邊形A2B3A3C3…四邊形An-1BnAnCn都是菱形,∠A0B1A1=∠A1B2A2=∠A2B3A3…=∠An-1BnAn=60°,菱形An-1BnAnCn的周長為.23x2組卷:2779引用:68難度:0.7
二、解答題(共28小題)
-
3.如圖,已知拋物線y=x2+bx+c與x軸交于點(diǎn)A,B,AB=2,與y軸交于點(diǎn)C,對稱軸為直線x=2.
(1)求拋物線的函數(shù)表達(dá)式;
(2)設(shè)P為對稱軸上一動(dòng)點(diǎn),求△APC周長的最小值;
(3)設(shè)D為拋物線上一點(diǎn),E為對稱軸上一點(diǎn),若以點(diǎn)A,B,D,E為頂點(diǎn)的四邊形是菱形,則點(diǎn)D的坐標(biāo)為.組卷:690引用:59難度:0.1 -
4.如圖1,拋物線y=-
x2+bx+c與x軸相交于點(diǎn)A,C,與y軸相交于點(diǎn)B,連接AB,BC,點(diǎn)A的坐標(biāo)為(2,0),tan∠BAO=2,以線段BC為直徑作⊙M交AB于點(diǎn)D,過點(diǎn)B作直線l∥AC,與拋物線和⊙M的另一個(gè)交點(diǎn)分別是E,F(xiàn).23
(1)求該拋物線的函數(shù)表達(dá)式;
(2)求點(diǎn)C的坐標(biāo)和線段EF的長;
(3)如圖2,連接CD并延長,交直線l于點(diǎn)N,點(diǎn)P,Q為射線NB上的兩個(gè)動(dòng)點(diǎn)(點(diǎn)P在點(diǎn)Q的右側(cè),且不與N重合),線段PQ與EF的長度相等,連接DP,CQ,四邊形CDPQ的周長是否有最小值?若有,請求出此時(shí)點(diǎn)P的坐標(biāo)并直接寫出四邊形CDPQ周長的最小值;若沒有,請說明理由.組卷:1247引用:51難度:0.5 -
5.如圖1,已知直線y=x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,拋物線y=-x2+bx+c經(jīng)過A、B兩點(diǎn),與x軸交于另一個(gè)點(diǎn)C,對稱軸與直線AB交于點(diǎn)E,拋物線頂點(diǎn)為D.
(1)求拋物線的解析式;
(2)在第三象限內(nèi),F(xiàn)為拋物線上一點(diǎn),以A、E、F為頂點(diǎn)的三角形面積為3,求點(diǎn)F的坐標(biāo);
(3)點(diǎn)P從點(diǎn)D出發(fā),沿對稱軸向下以每秒1個(gè)單位長度的速度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)t為何值時(shí),以P、B、C為頂點(diǎn)的三角形是直角三角形?直接寫出所有符合條件的t值.組卷:1153引用:54難度:0.5 -
6.如圖,在平面直角坐標(biāo)系xOy中,將拋物線C1:y=x2+3先向右平移1個(gè)單位,再向下平移7個(gè)單位得到拋物線C2.C2的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).
(1)求拋物線C2的解析式;
(2)若拋物線C2的對稱軸與x軸交于點(diǎn)C,與拋物線C2交于點(diǎn)D,與拋物線C1交于點(diǎn)E,連接AD、DB、BE、EA,請證明四邊形ADBE是菱形,并計(jì)算它的面積;
(3)若點(diǎn)F為對稱軸DE上任意一點(diǎn),在拋物線C2上是否存在這樣的點(diǎn)G,使以O(shè)、B、F、G四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,請求出點(diǎn)G的坐標(biāo);如果不存在,請說明理由.組卷:303引用:50難度:0.5 -
7.如圖,直線y=-x+3與x軸交于點(diǎn)C,與y軸交于點(diǎn)A,點(diǎn)B的坐標(biāo)為(2,3)拋物線y=-x2+bx+c經(jīng)過A、C兩點(diǎn).
(1)求拋物線的解析式,并驗(yàn)證點(diǎn)B是否在拋物線上;
(2)作BD⊥OC,垂足為D,連接AB,E為y軸左側(cè)拋物線點(diǎn),當(dāng)△EAB與△EBD的面積相等時(shí),求點(diǎn)E的坐標(biāo);
(3)點(diǎn)P在直線AC上,點(diǎn)Q在拋物線y=-x2+bx+c上,是否存在P、Q,使以A、B、P、Q為頂點(diǎn)的四邊形為平行四邊形?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.組卷:466引用:50難度:0.5 -
8.如圖,拋物線y=a(x-h)2+k經(jīng)過點(diǎn)A(0,1),且頂點(diǎn)坐標(biāo)為B(1,2),它的對稱軸與x軸交于點(diǎn)C.
(1)求此拋物線的解析式.
(2)在第一象限內(nèi)的拋物線上求點(diǎn)P,使得△ACP是以AC為底的等腰三角形,請求出此時(shí)點(diǎn)P的坐標(biāo).
(3)上述點(diǎn)是否是第一象限內(nèi)此拋物線上與AC距離最遠(yuǎn)的點(diǎn)?若是,請說明理由;若不是,請求出第一象限內(nèi)此拋物線上與AC距離最遠(yuǎn)的點(diǎn)的坐標(biāo).組卷:439引用:51難度:0.5 -
9.已知函數(shù)y=kx2-2x+
(k是常數(shù))32
(1)若該函數(shù)的圖象與x軸只有一個(gè)交點(diǎn),求k的值;
(2)若點(diǎn)M(1,k)在某反比例函數(shù)的圖象上,要使該反比例函數(shù)和二次函數(shù)y=kx2-2x+都是y隨x的增大而增大,求k應(yīng)滿足的條件以及x的取值范圍;32
(3)設(shè)拋物線y=kx2-2x+與x軸交于A(x1,0),B(x2,0)兩點(diǎn),且x1<x2,x12+x22=1.在y軸上,是否存在點(diǎn)P,使△ABP是直角三角形?若存在,求出點(diǎn)P及△ABP的面積;若不存在,請說明理由.32組卷:304引用:51難度:0.5 -
10.如圖,已知拋物線y=x2+bx+c的圖象與x軸的一個(gè)交點(diǎn)為B(5,0),另一個(gè)交點(diǎn)為A,且與y軸交于點(diǎn)C(0,5).
(1)求直線BC與拋物線的解析式;
(2)若點(diǎn)M是拋物線在x軸下方圖象上的一動(dòng)點(diǎn),過點(diǎn)M作MN∥y軸交直線BC于點(diǎn)N,求MN的最大值;
(3)在(2)的條件下,MN取得最大值時(shí),若點(diǎn)P是拋物線在x軸下方圖象上任意一點(diǎn),以BC為邊作平行四邊形CBPQ,設(shè)平行四邊形CBPQ的面積為S1,△ABN的面積為S2,且S1=6S2,求點(diǎn)P的坐標(biāo).組卷:2292引用:67難度:0.5
二、解答題(共28小題)
-
29.如圖,拋物線y=
x2+bx+c與y軸交于點(diǎn)C(0,-4),與x軸交于點(diǎn)A,B,且B點(diǎn)的坐標(biāo)為(2,0).12
(1)求該拋物線的解析式.
(2)若點(diǎn)P是AB上的一動(dòng)點(diǎn),過點(diǎn)P作PE∥AC,交BC于E,連接CP,求△PCE面積的最大值.
(3)若點(diǎn)D為OA的中點(diǎn),點(diǎn)M是線段AC上一點(diǎn),且△OMD為等腰三角形,求M點(diǎn)的坐標(biāo).組卷:2230引用:67難度:0.5 -
30.如圖,拋物線y=ax2+bx+c(a≠0)的圖象過點(diǎn)C(0,1),頂點(diǎn)為Q(2,3),點(diǎn)D在x軸正半軸上,且OD=OC.
(1)求直線CD的解析式;
(2)求拋物線的解析式;
(3)將直線CD繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)45°所得直線與拋物線相交于另一點(diǎn)E,求證:△CEQ∽△CDO;
(4)在(3)的條件下,若點(diǎn)P是線段QE上的動(dòng)點(diǎn),點(diǎn)F是線段OD上的動(dòng)點(diǎn),問:在P點(diǎn)和F點(diǎn)移動(dòng)過程中,△PCF的周長是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請說明理由.組卷:1007引用:60難度:0.5