2022-2023學年廣東省廣州市華南師大附中高二(上)段考數學試卷(二)
發(fā)布:2024/12/17 23:0:2
一、單選題:本大題共8小題,每小題3分,滿分24分.在每小題給出的四個選項中,只有一項符合題目要求.
-
1.在等差數列{an}中,a2=2,a5=8,則a8=( )
組卷:11難度:0.9 -
2.等比數列{an}中,若a1+a2+a3+a4=3(a1+a3),則公比為( )
組卷:276引用:6難度:0.8 -
3.《萊茵德紙草書》是世界上最古老的數學著作之一,書中有一道這樣的題目(改編):把100個面包分給5個人,使每個人所得成等差數列,且使較大的三份之和的
是較小的兩份之和,則最小的1份為( ?。?/h2>13組卷:48引用:8難度:0.7 -
4.已知數列{an}滿足an+
=1,若a1=2,則a2022=( ?。?/h2>1an+1組卷:82引用:1難度:0.7 -
5.已知數列:
,則1,12,21,13,22,31,14,23,32,41,?是數列中的( ?。?/h2>34組卷:169引用:3難度:0.8 -
6.設等差數列{an},{bn}的前n項和分別為Sn,Tn,若
,則SnTn=3n+54n-2=( )a8b8組卷:523引用:4難度:0.8 -
7.已知公差不為0的等差數列{an}的前n項和為Sn,若a4,S5,S7∈{-15,0},則Sn的最小值為( )
組卷:43難度:0.8
四、解答題:本大題共6小題,滿分48分.解答應寫出文字說明、證明過程或演算過程.
-
21.已知數列{an}滿足,a1+
.a22+a33+…+ann=12n(n+1)(n∈N*)
(1)求a1,a2的值
(2)求數列{an}的通項公式;
(3)設bn=,數列{bn}的前n項和為Sn,求證:?n∈N*,2n+1anan+1<1.34≤Sn組卷:349難度:0.6 -
22.設數列{an}的前n項和為Sn.若對任意n∈N*,總存在k∈N*,使得Sn=ak,則稱{an}是“K數列”.
(1)若數列an=5n(n∈N*),判斷{an}是不是“K數列”,并說明理由;
(2)設{bn}是等差數列,其首項b1=1,公差d∈N*,且{bn}是“K數列”.
①求d的值;
②設數列cn=,設數列{cn}的前n項和為Tn,若Tn≤mbn對任意n∈N*成立,求實數m的取值范圍.3+(-13)bn1-(-13)bn組卷:39引用:3難度:0.5