2022-2023學年江西省宜春市高安市灰埠中學高二(下)期中數(shù)學試卷
發(fā)布:2024/7/14 8:0:9
一、單選題(每題5分,共40分)
-
1.復數(shù)z滿足(z-4)(2-i)=5(i為虛數(shù)單位),則z的共軛復數(shù)
的虛部為( ?。?/h2>z組卷:65引用:3難度:0.8 -
2.若兩個等差數(shù)列{an}、{bn}的前n項和分別為Sn、Tn,且
,則SnTn=2n+1n+2(n∈N*)等于( ?。?/h2>a7b7組卷:61引用:5難度:0.9 -
3.過點(0,4)的直線l與x2+y2=4有兩個不同的公共點,則直線l的傾斜角的范圍是( ?。?/h2>
組卷:89引用:2難度:0.6 -
4.在正方體ABCD-A1B1C1D1中,有下列四個命題:
①B1C∥平面A1C1D;
②B1C⊥BD1;
③異面直線B1C與BD所成的角為60°;
④直線B1C與平面ACC1A1所成的角為45°.
其中真命題的個數(shù)為( ?。?/h2>組卷:159引用:1難度:0.5 -
5.函數(shù)f(x)=x2-alnx(a>0)的減區(qū)間為(0,1),則實數(shù)a的值為( ?。?/h2>
組卷:24引用:2難度:0.8 -
6.已知函數(shù)f(x)=
,g(x)=alnx,若在x=x處函數(shù)f(x)與g(x)的圖象的切線平行,則實數(shù)a的值為( ?。?/h2>14組卷:18引用:2難度:0.6 -
7.設函數(shù)f(x)的定義域為R,其導函數(shù)為f'(x),若f'(-x)=f'(x),f(2x)+f(2-2x)=3,則下列結論不一定正確的是( ?。?/h2>
組卷:206引用:4難度:0.5
四、解答題(共70分)
-
21.橢圓
=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,右頂點為A,上頂點為B,且滿足向量x2a2+y2b2=0.BF1?BF2
(1)若A(2,0),求橢圓的標準方程;
(2)設P為橢圓上異于頂點的點,以線段PB為直徑的圓經(jīng)過F1,問是否存在過F2的直線與該圓相切?若存在,求出其斜率;若不存在,說明理由.組卷:347引用:4難度:0.3 -
22.已知函數(shù)f(x)=ex-x+acosx.
(1)若函數(shù)f(x)在[0,π]上單調遞增,求a的取值范圍;
(2)證明:當a≥1時,f(x)>xlnx+1-ax.組卷:135引用:2難度:0.3