在數(shù)列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差數(shù)列,bn,an+1,bn+1成等比數(shù)列.
(1)求a2,a3,a4及b2,b3,b4,由此猜測{an},{bn}的通項公式,并證明你的結(jié)論;
(2)證明:1a1+b1+1a2+b2+…+1an+bn<512.
1
a
1
+
b
1
+
1
a
2
+
b
2
+
…
+
1
a
n
+
b
n
<
5
12
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:844引用:14難度:0.1
相似題
-
1.用數(shù)學歸納法證明
+1n+1+…+1n+2≥13n,從n=k到n=k+1,不等式左邊需添加的項是( ?。?/h2>56發(fā)布:2024/12/17 12:30:2組卷:393引用:10難度:0.9 -
2.用數(shù)學歸納法證明
時,在證明n=1等式成立時,此時等式的左邊是( )1+a+a2+…+a2(n+1)=1-a2n+31-a(a≠1,n∈N*)發(fā)布:2024/12/29 9:0:1組卷:291引用:3難度:0.8 -
3.已知n為正整數(shù),請用數(shù)學歸納法證明:1+
+12+……+131n.<2n發(fā)布:2024/10/27 17:0:2組卷:424引用:1難度:0.7
相關(guān)試卷