如果一個正整數(shù)能表示為兩個正整數(shù)的平方差,那么稱這個正整數(shù)為“智慧數(shù)”,兩個正整數(shù)為它的“智慧分解”.
例如,因?yàn)?6=52-32,所以16就是一個智慧數(shù),而5和3則是16的智慧分解.那么究竟哪些數(shù)為智慧數(shù)?第2022個智慧數(shù)是否存在,若存在,又是哪個數(shù)?為此,小明和小穎展開了如下探究.
小穎的方法是通過計(jì)算,一個個羅列出來:3=22-12,5=32-22,7=42-32,9=52-42,…
小明認(rèn)為小穎的方法太麻煩,他想到:
設(shè)兩個數(shù)分別為k+1,k,其中k≥1,且k為整數(shù).
則(k+1)2-k2=(k+1+k)(k+1-k)=2k+1.
(1)根據(jù)上述探究,可以得出:除1外,所有 奇數(shù)奇數(shù)都是智慧數(shù),并請直接寫出11,15的智慧分解;
(2)繼續(xù)探究,他們發(fā)現(xiàn)8=32-12,12=42-22,所以8和12均是智慧數(shù),由此,他們猜想:4k(k≥2,且k為整數(shù))均為智慧數(shù).請證明他們的猜想;
(3)根據(jù)以上所有探究,請直接寫出第2023個智慧數(shù),以及它的智慧分解.
【考點(diǎn)】因式分解的應(yīng)用.
【答案】奇數(shù)
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/4 7:0:1組卷:182引用:1難度:0.5
相似題
-
1.閱讀下列題目的解題過程:
已知a、b、c為△ABC的三邊長,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解:∵a2c2-b2c2=a4-b4(A)
∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
∴c2=a2+b2(C)
∴△ABC是直角三角形
問:(1)上述解題過程,從哪一步開始出現(xiàn)錯誤?請寫出該步的代號:;
(2)錯誤的原因?yàn)椋?!--BA-->;
(3)本題正確的結(jié)論為:.發(fā)布:2024/12/23 18:0:1組卷:2502引用:25難度:0.6 -
2.若a是整數(shù),則a2+a一定能被下列哪個數(shù)整除( )
發(fā)布:2024/12/24 6:30:3組卷:385引用:7難度:0.6 -
3.閱讀理解:
能被7(或11或13)整除的特征:如果一個自然數(shù)末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是7(或11或13)的倍數(shù),則這個數(shù)就能被7(或11或13)整除.
如:456533,533-456=77,77是7的11倍,所以,456533能被7整除.又如:345548214,345548-214=345334,345-334=11,11是11的1倍,所以,345548214能被11整除.
(1)用材料中的方法驗(yàn)證67822615是7的倍數(shù)(寫明驗(yàn)證過程);
(2)若對任意一個七位數(shù),末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是11的倍數(shù),證明這個七位數(shù)一定能被11整除.發(fā)布:2025/1/5 8:0:1組卷:121引用:3難度:0.4
把好題分享給你的好友吧~~