“構造圖形解題”,它的應用十分廣泛,特別是有些技巧性很強的題目,如果不能發(fā)現(xiàn)題目中所隱含的幾何意義,而用通常的代數(shù)方法去思考,經(jīng)常讓我們手足無措,難以下手,這時,如果能轉換思維,發(fā)現(xiàn)題目中隱含的幾何條件,通過構造適合的幾何圖形,將會得到事半功倍的效果,下面介紹兩則實例:
實例一:勾股定理是人類最偉大的十個科學發(fā)現(xiàn)之一,在我國古書《周髀算經(jīng)》中就有“若勾三,股四,則弦五”的記載,我國漢代數(shù)學家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”(如實例圖一),后人稱之為“趙爽弦圖”,流傳至今.他利用直角邊為a和b,斜邊為c的四個全等的直角三角形拼成如圖所示的圖形(如實例圖一),由S大正方形=4S直角三角形+S小正方形,得c2=4×12ab+(b-a)2,化簡得:a2+b2=c2.
實例二:歐幾里得的《幾何原本)記載,關于x的方程x2+ax=b2的圖解法是:畫Rt△ABC,使∠ACB=90°,BC=a2,AC=|b|,再在斜邊AB上截取BD=BC=a2,則AD的長就是該方程的一個正根(如實例圖二).
根據(jù)以上閱讀材料回答下面的問題:
(1)如圖1,請利用圖形中面積的等量關系,寫出甲圖要證明的數(shù)學公式是 完全平方公式完全平方公式,乙圖要證明的數(shù)學公式是 平方差公式平方差公式;
(2)如圖2,利用歐幾里得的方法求方程x2+4x-4=0的一個正根.
(3)如圖3,已知⊙O,AB為直徑,點C為圓上一點,過點C作CD⊥AB于點D,連接CD,設DA=a,BD=b,請利用圖3證明:a+b2≥ab.
c
2
=
4
×
1
2
ab
+
(
b
-
a
)
2
BC
=
a
2
BD
=
BC
=
a
2
a
+
b
2
≥
ab
【考點】圓的綜合題.
【答案】完全平方公式;平方差公式
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:276引用:1難度:0.5
相似題
-
1.如圖,AB是⊙O的直徑,AC是弦,直線EF經(jīng)過點C,AD⊥EF于點D,∠DAC=∠BAC.
(1)求證:EF是⊙O的切線;
(2)求證:AC2=AD?AB;
(3)若⊙O的半徑為2,∠ACD=30°,求圖中陰影部分的面積.發(fā)布:2024/12/23 9:0:2組卷:1798引用:34難度:0.7 -
2.如圖,矩形ABCD中,AB=13,AD=6.點E是CD上的動點,以AE為直徑的⊙O與AB交于點F,過點F作FG⊥BE于點G.
(1)當E是CD的中點時:tan∠EAB的值為;
(2)在(1)的條件下,證明:FG是⊙O的切線;
(3)試探究:BE能否與⊙O相切?若能,求出此時BE的長;若不能,請說明理由.發(fā)布:2024/12/23 12:0:2組卷:639引用:5難度:0.4 -
3.在平面直角坐標系xOy中,⊙O的半徑為1,P是坐標系內任意一點,點P到⊙O的距離SP的定義如下:若點P與圓心O重合,則SP為⊙O的半徑長;若點P與圓心O不重合,作射線OP交⊙O于點A,則SP為線段AP的長度.
圖1為點P在⊙O外的情形示意圖.
(1)若點B(1,0),C(1,1),,則SB=D(0,13)
(2)若直線y=x+b上存在點M,使得SM=2,求b的取值范圍;
(3)已知點P,Q在x軸上,R為線段PQ上任意一點.若線段PQ上存在一點T,滿足T在⊙O內且ST≥SR,直接寫出滿足條件的線段PQ長度的最大值.發(fā)布:2024/12/23 11:0:1組卷:618引用:11難度:0.1
把好題分享給你的好友吧~~