試卷征集
加入會員
操作視頻

菁優(yōu)網如圖,小明同學先把一根直尺固定在畫板上,把一塊三角板的一條直角邊緊靠在直尺邊沿,再取一根細繩,它的長度與另一直角邊相等,讓細繩的一端固定在三角板的頂點Q處,另一端固定在畫板上點F處,用鉛筆尖扣緊繩子,讓細繩緊貼住三角板的直角邊,然后將三角板沿著直尺上下滑動,這時筆尖在平面上留下軌跡C.已知細繩長度為3cm,經測量,當筆尖運動到點P處時,∠FQP=30°,∠QFP=90°.設直尺邊沿所直線為a,以過F垂直于直尺的直線為x軸,以過F垂直于a的垂線段的中垂線為y軸,以1cm為單位長度,建立平面直角坐標系.
(1)求C的方程;
(2)過點D(0,-3)且斜率為k的直線l與C交于A,B兩點,k的取值范圍為(0,2),探究:是否存在λ,使得
DA
=
λ
DB
,若存在,求出λ的取值范圍,若不存在,說明理由.

【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:22引用:2難度:0.4
相似題
  • 1.已知兩個定點坐標分別是F1(-3,0),F2(3,0),曲線C上一點任意一點到兩定點的距離之差的絕對值等于2
    5

    (1)求曲線C的方程;
    (2)過F1(-3,0)引一條傾斜角為45°的直線與曲線C相交于A、B兩點,求△ABF2的面積.

    發(fā)布:2024/12/29 10:30:1組卷:84引用:1難度:0.9
  • 2.點P在以F1,F2為焦點的雙曲線
    E
    x
    2
    a
    2
    -
    y
    2
    b
    2
    =
    1
    (a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O為坐標原點.
    (Ⅰ)求雙曲線的離心率e;
    (Ⅱ)過點P作直線分別與雙曲線漸近線相交于P1,P2兩點,且
    O
    P
    1
    ?
    O
    P
    2
    =
    -
    27
    4
    ,
    2
    P
    P
    1
    +
    P
    P
    2
    =
    0
    ,求雙曲線E的方程;
    (Ⅲ)若過點Q(m,0)(m為非零常數)的直線l與(2)中雙曲線E相交于不同于雙曲線頂點的兩點M、N,且
    MQ
    =
    λ
    QN
    (λ為非零常數),問在x軸上是否存在定點G,使
    F
    1
    F
    2
    GM
    -
    λ
    GN
    ?若存在,求出所有這種定點G的坐標;若不存在,請說明理由.

    發(fā)布:2024/12/29 10:0:1組卷:64引用:5難度:0.7
  • 3.若過點(0,-1)的直線l與拋物線y2=2x有且只有一個交點,則這樣的直線有( ?。l.

    發(fā)布:2024/12/29 10:30:1組卷:26難度:0.7
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正