南宋著名數(shù)學(xué)家秦九韶的著作《數(shù)書九章》一書中,給出了“秦九韶公式”,也叫“三斜求積術(shù)”,即如果一個(gè)三角形的三邊長分別為a,b,c,則該三角形的面積為S=14[a2b2-(a2+b2-c22)2].設(shè)△ABC的三邊長分別為1,2,5,該△ABC的面積為( ?。?br />
1
4
[
a
2
b
2
-
(
a
2
+
b
2
-
c
2
2
)
2
]
5
【考點(diǎn)】二次根式的應(yīng)用;數(shù)學(xué)常識(shí).
【答案】A
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/21 8:0:9組卷:167引用:4難度:0.7
相似題
-
1.如圖,一塊正方形地磚的圖案是由4個(gè)全等的五邊形和1個(gè)小正方形組成的,已知小正方形的面積和五邊形的面積相等,并且圖中線段a的長度為
,則這塊地磚的面積為( )10-2發(fā)布:2024/12/4 10:30:2組卷:417引用:3難度:0.7 -
2.如圖,已知釣魚竿AC的長為6m,露在水面上的魚線BC長為3
m,某釣者想看看魚鉤上的情況,把魚竿AC轉(zhuǎn)動(dòng)到AC′的位置,此時(shí)露在水面上的魚線B′C′為2m,則BB′的長為( )34發(fā)布:2024/11/30 14:30:2組卷:1358引用:10難度:0.9 -
3.(1)用“=”、“>”、“<”填空.
+12213;6+3212×13;1+6×3215;7+721×15.7×7
(2)由(1)中各式猜想a+b與2(a≥0,b≥0)的大小,并說明理由.ab
(3)請(qǐng)利用上述結(jié)論解決下面問題:
某同學(xué)在做一個(gè)面積為1800cm2,對(duì)角線相互垂直的四邊形風(fēng)箏時(shí),求用來做對(duì)角線的竹條至少要多少厘米?發(fā)布:2024/12/23 18:30:1組卷:1559引用:5難度:0.5